Skip to main content
Log in

Surface-Enhanced Fluorescence of Erbium Ions on Copper Nanoparticles Containing Tellurite Glasses

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel erbium-doped tellurite glass containing copper nanoparticles (CuNP) prepared by a melting-quenching method is reported. The efficient coupling between CuNP and Er3+ ions rendered a strong emission enhancement, reaching maximum values on the order of 10 times for the intensity of the 4I9/24I15/2 and 2H11/24I13/2 transitions, at 794 nm and 805 nm, respectively. The energy transfer mechanism of the coupling between CuNP dipoles and Er3+ ions was also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aroca RF (2013) Plasmon enhanced spectroscopy. Phys Chem Chem Phys 15:5355–5363. https://doi.org/10.1039/C3CP44103B

    Article  CAS  PubMed  Google Scholar 

  2. Zhou J et al (2020) High-performance plasmonic oblique sensors for the detection of ions. Nanotechnology. 31:285501. https://doi.org/10.1088/1361-6528/ab8329

    Article  CAS  PubMed  Google Scholar 

  3. Shi L et al (2019) Tunable dual-band plasmonic perfect absorber and its sensing applications. J Opt Soc Am B 36:2750–2756. https://doi.org/10.1364/JOSAB.36.002750

    Article  CAS  Google Scholar 

  4. Liu G et al (2019) Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures. Nanophotonics. 8:1095–1107. https://doi.org/10.1515/nanoph-2019-0078

    Article  CAS  Google Scholar 

  5. Fort E, Grésillon S (2007) Surface enhanced fluorescence. J Phys D Appl Phys 41:013001. https://doi.org/10.1088/0022-3727/41/1/013001

    Article  CAS  Google Scholar 

  6. Lakowicz JR et al (2004) Advances in surface-enhanced fluorescence. J Lumin 14:425–441. https://doi.org/10.1023/b:jofl.0000031824.48401.5c

    Article  CAS  Google Scholar 

  7. Hua C et al (2017) Pr3+ doped tellurite glasses incorporated with silver nanoparticles for laser illumination. RSC Adv 7:55691–55701. https://doi.org/10.1039/C7RA11594F

    Article  CAS  Google Scholar 

  8. Fares H et al (2016) Nano-silver enhanced luminescence of Er3+ ions embedded in tellurite glass, vitro-ceramic and ceramic: Impact of heat treatment. RSC Adv 6:31136–31145. https://doi.org/10.1039/C6RA02095J

    Article  CAS  Google Scholar 

  9. Rivera VAG et al (2013) Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass. J Non-Cryst Solids 378:126–134. https://doi.org/10.1016/j.jnoncrysol.2013.07.004

    Article  CAS  Google Scholar 

  10. Huang B et al (2016) The 1.53 μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles. Opt Mater 51:9–17. https://doi.org/10.1016/j.optmat.2015.11.004

    Article  CAS  Google Scholar 

  11. Reisfeld R, Eckstein Y (1972) Optical spectra of erbium and thulium in germanate glass. J Non-Cryst Solids 12:357–376. https://doi.org/10.1016/0022-3093(73)90008-2

    Article  Google Scholar 

  12. Golis E (2016) The effect of Nd3+ impurity on the magneto-optical properties of the TeO2-P2O5-ZnO-LiNbO3 tellurite glass. RSC Adv 6:22370–22373. https://doi.org/10.1039/C6RA00642F

    Article  CAS  Google Scholar 

  13. Golis E et al (2015) Influence of lanthanum on structural and magneto-optic properties of diamagnetic glasses of the TeO2–WO3–PbO system. RSC Adv 5:102530–102534. https://doi.org/10.1039/C5RA16674H

    Article  CAS  Google Scholar 

  14. Manzani D et al (2012) 1.5 μm and visible up-conversion emissions in Er3+/Yb3+ co-doped tellurite glasses and optical fibers for photonic applications. J Mater Chem 22:16540–16545. https://doi.org/10.1039/C2JM33057A

    Article  CAS  Google Scholar 

  15. Manzani D et al (2017) A portable luminescent thermometer based on green upconversion emission of Er3+/Yb3+ co-doped tellurite glass. Sci Rep 7:41596. https://doi.org/10.1038/srep41596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rice KP et al (2011) Solvent-dependent surface plasmon response and oxidation of copper nanocrystals. J Phys Chem C 115:1793–1799. https://doi.org/10.1021/jp110483z

    Article  CAS  Google Scholar 

  17. Reisfeld R et al (2014) Sol-gel glasses with enhanced luminescence of laser dye rhodamine B due to plasmonic coupling by copper nanoparticles. Opt Mater 36:1611–1615. https://doi.org/10.1016/j.optmat.2013.11.011

    Article  CAS  Google Scholar 

  18. Dan, H. K. et al. Effect of copper nanoparticles on the enhancement of upconversion in the Tb3+/Yb3+ co-doped transparent glass-ceramics. Opt Mater. v. 39. p. 160-166. 2015. 10.1016/j.optmat.2014.11.018

  19. Franco DF et al (2015) The Sb2O3 redox route to obtain copper nanoparticles in glasses with plasmonic properties. J Mater Chem C 3:3803–3808. https://doi.org/10.1039/C5TC00102A

    Article  CAS  Google Scholar 

  20. Machado, T. M. and Silva, M. A. P. The reduction of tellurium in binary glasses in the system TeO2-Sb2O3. Mater Chem Phys. 201. p. 86-91. 2017. 10.1016/j.matchemphys.2017.08.031

  21. Manzani D et al (2013) Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles. Plasmonics. 8:1667–1674. https://doi.org/10.1007/s11468-013-9585-z

    Article  CAS  Google Scholar 

  22. Charton P, Armand P (2003) Glasses in the TeO2–Sb2O4 binary system. J Non-Cryst Solids 316:189–197. https://doi.org/10.1016/S0022-3093(02)01797-0

    Article  CAS  Google Scholar 

  23. Inoue T et al (2000) Characterization and selective oxidation catalysis of modified Pt particles on SbOx. Appl Catal A Gen 191:131–140. https://doi.org/10.1016/S0926-860X(99)00314-2

    Article  CAS  Google Scholar 

  24. Aghdam EG, Gouravan SC (2013) Hydrothermal synthesis of Sb6O13 nanocrystals and their properties. Journal of Basic and Applied Scientific Research ISSN:2090–4304

  25. Machado TM et al (2019) Erbium 1.55 μm luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses. Mater Chem Phys 224:73–78. https://doi.org/10.1016/j.matchemphys.2018.11.059

    Article  CAS  Google Scholar 

  26. de Carvalho DF et al (2013) Surface-enhanced Raman scattering study of the redox adsorption of p-phenylenediamine on gold or copper surfaces. Spectrochim Acta A Mol Biomol Spectrosc 103:108–113. https://doi.org/10.1016/j.saa.2012.10.059

    Article  CAS  PubMed  Google Scholar 

  27. Rivera VAG et al (2012) Efficient plasmonic coupling between Er3+: (Ag/Au) in tellurite glasses. J Non-Cryst Solids 358:399–405. https://doi.org/10.1016/j.jnoncrysol.2011.10.008

    Article  CAS  Google Scholar 

  28. Dwivedi Y, Rai SB (2012) Up-conversion luminescence and local heating in Er3+ doped tellurite glass. Applied Physics A 109:213–218. https://doi.org/10.1007/s00339-012-7035-y

    Article  CAS  Google Scholar 

  29. Amjad RJ et al (2013) Surface enhanced Raman scattering and plasmon enhanced fluorescence in zinc-tellurite glass. Opt Express 21:14282–14290. https://doi.org/10.1364/OE.21.014282

    Article  CAS  PubMed  Google Scholar 

  30. Machado TM et al (2020) Unprecedented multiphonon vibronic transitions of erbium ions on copper nanoparticle-containing tellurite glasses. Phys Chem Chem Phys 22:13118–13122. https://doi.org/10.1039/D0CP01690J

    Article  CAS  PubMed  Google Scholar 

  31. Noguera O et al (2003) Vibrational and structural properties of glass and crystalline phases of TeO2. J Non-Cryst Solids 330:50–60. https://doi.org/10.1016/j.jnoncrysol.2003.08.052

    Article  CAS  Google Scholar 

  32. Silva MAP et al (2001) Structural studies on TeO2-PbO glasses. J Phys Chem Solids 62:1055–1060. https://doi.org/10.1016/S0022-3697(00)00278-X

    Article  CAS  Google Scholar 

  33. Champarnaud-Mesjard JC et al (2000) Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: γ-TeO2. J Phys Chem Solids 61:1499–1507. https://doi.org/10.1016/S0022-3697(00)00012-3

    Article  CAS  Google Scholar 

  34. Jimenez JA (2015) Photoluminescence of Eu3+-doped glasses with Cu2+ impurities. Spectrochim Acta A Mol Biomol Spectrosc 145:482–486. https://doi.org/10.1016/j.saa.2015.03.047

    Article  CAS  PubMed  Google Scholar 

  35. Zhang WW et al (2012) Monitoring of laser heating temperature in laser spectroscopic measurements. Opt Commun 285:2414–2417. https://doi.org/10.1016/j.optcom.2012.01.009

    Article  CAS  Google Scholar 

  36. Zhou S et al (2015) An abnormal fluorescence intensity ratio between two green emissions of Er3+ caused by heating effect of 980 nm excitation. J Rare Earths 33:1031–1035. https://doi.org/10.1016/S1002-0721(14)60522-6

    Article  CAS  Google Scholar 

  37. Marchenko VM (2006) Visible luminescence of Er2O3 induced by CO2 laser radiation with a wavelength of 10.6 μm. Laser Phys 16:981–984. https://doi.org/10.1134/S1054660X06060119

    Article  CAS  Google Scholar 

  38. Marchenko VM (2006) Selective visible and near-IR emission of Er2O3 excited by a 10.6-μm CO2 laser. Quantum Electronics 36:727. https://doi.org/10.1070/QE2006v036n08ABEH013186

    Article  CAS  Google Scholar 

  39. Hayakawa T et al (2008) Estimation of the fs laser spot temperature inside TeO2–ZnO–Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions. Journal Of Alloys Compounds 451:77–80. https://doi.org/10.1016/j.jallcom.2007.04.181

    Article  CAS  Google Scholar 

  40. Marchenko VM (2007) Dependence of the Er2O3 selective emission on the intensity of laser thermal excitation. Laser Phys 17:1146–1150. https://doi.org/10.1134/S1054660X07090071

    Article  CAS  Google Scholar 

  41. Marchenko VM et al (2013) Selective emission and luminescence of Er2O3 under intense laser excitation. Laser Phys 43:859. https://doi.org/10.1070/QE2013v043n09ABEH015158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Sérgio Rodrigues Tavares Filho.

Funding

This work was financially supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; #88882.315335/2019-01), CNPq (National Council for Scientific and Technological Development) and FAPEMIG (Fundação de Amparo a Pesquisa do Estado de Minas Gerais), Brazilian funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamires Martinhão Machado.

Ethics declarations

Conflict of Interest

The authors declare that they no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, T.M., Falci, R.F., Andrade, G.F.S. et al. Surface-Enhanced Fluorescence of Erbium Ions on Copper Nanoparticles Containing Tellurite Glasses. Plasmonics 16, 139–145 (2021). https://doi.org/10.1007/s11468-020-01266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01266-9

Keywords

Navigation