Skip to main content
Log in

Ultrahigh-Q and Polarization-Independent Terahertz Metamaterial Perfect Absorber

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Ensuring a good trade-off between high-quality factor (Q-factor) and polarization independency is a key challenge for designing practicable terahertz metamaterial devices. We propose a symmetric composite aluminum-structured metamaterial absorber to achieve high Q-factor beyond 80 and near-unity absorbance of arbitrary polarization waves in the terahertz regime. Ultrahigh Q-factor reaches 84, and polarization-independent absorption is as high as 99% for resonant frequency tuning from 7.58 to 8.97 THz, covering 14% of the standard THz gap. The geometric effect of the symmetric sublattice on resonant frequency tuning is analyzed. The large Q-factor and strong absorption by oblique incidence is discussed. Designed high-Q metamaterial perfect absorber has various applications, including terahertz hyperspectral imaging, filtering, and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bao Y, He C, Zhou F, Stuart C, Sun C (2012) A realistic design of three-dimensional full cloak at terahertz frequencies. Appl Phys Lett 101:031910

    Article  CAS  Google Scholar 

  2. Rahman A, Rahman AK, Rao B (2016) Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens Bioelectron 82:64–70

    Article  CAS  PubMed  Google Scholar 

  3. Dolganova IN, Zaytsev KI, Metelkina AA, Yakovlev EV, Karasik VE, Yurchenko SO (2016) Combined terahertz imaging system for enhanced imaging quality. Opt Quant Electron 48:325

    Article  Google Scholar 

  4. Ng B, Wu J, Hanham SM, Fernández-Domínguez AI, Klein N, Liew YF, Breese MBH, Hong M, Maier SA (2013) Spoof plasmon surfaces: a novel platform for THz sensing. Adv Opt Mater 1:543–548

    Article  Google Scholar 

  5. Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W (2014) Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl Phys Lett 105:171101

    Article  CAS  Google Scholar 

  6. Hokmabadi MP, Wilbert DS, Kung P, Kim SM (2013) Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model. Opt Express 21:16455–16456

    Article  CAS  PubMed  Google Scholar 

  7. Wang G, Wang B (2015) Five-band terahertz metamaterial absorber based on a four-gap comb resonator. J Lightwave Technol 33:5151–5156

    Article  Google Scholar 

  8. Rodríguez-Ulibarri P, Kuznetsov SA, Beruete M (2016) Wide angle terahertz sensing with a cross-dipole frequency selective surface. Appl Phys Lett 108:111104

    Article  CAS  Google Scholar 

  9. Driscoll T, Andreev GO, Basov DN, Palit S, Cho SY, Jokerst NM, Smith DR (2017) Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl Phys Lett 91:062511

    Article  CAS  Google Scholar 

  10. Al-Naib I, Singh R, Rockstuhl C, Lederer F, Delprat S, Rocheleau D (2012) Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials. Appl Phys Lett 101:071108

    Article  CAS  Google Scholar 

  11. Reiten MT, Chowdhury DR, Zhou J, Taylor AJ, O’Hara JF, Azad AK (2011) Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials. Appl Phys Lett 98:131105

    Article  CAS  Google Scholar 

  12. Singh R, Al-Naib IAI, Koch M, Zhang W (2011) Sharp Fano resonances in THz metamaterials. Opt Express 19:6312–6319

    Article  PubMed  Google Scholar 

  13. Singh R, Al-Naib IAI, Yang Y, Chowdhury DR, Cao W, Rockstuhl C, Ozaki T, Morandotti R, Zhang W (2011) Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl Phys Lett 99:201107

    Article  CAS  Google Scholar 

  14. Singh R, Al-Naib IAI, Koch M, Zhang W (2010) Asymmetric planar terahertz metamaterials. Opt Express 18:13044–13050

    Article  CAS  PubMed  Google Scholar 

  15. Cheng YZ, Nie Y, Gong R (2013) A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Opt Laser Technol 48:415–421

    Article  CAS  Google Scholar 

  16. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  17. Hibbins AP, Sambles JR, Lawrence CR, Brown JR (2004) Squeezing millimeter waves into microns. Phys Rev Lett 92:143904

    Article  CAS  PubMed  Google Scholar 

  18. Ortuño R, García-Meca C, Martínez A (2014) Terahertz metamaterials on flexible polypropylene substrate. Plasmonics 9:1143–1147

    Article  CAS  Google Scholar 

  19. Fasoli A, Brunner S, Cooper WA, Graves JP, Ricci P, Sauter O, Villard L (2016) Computational challenges in magnetic-confinement fusion physics. Nat Phys 12:411–423

    Article  CAS  Google Scholar 

  20. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  PubMed  Google Scholar 

  21. Isić G, Vasić B, Zografopoulos DC, Beccherelli R, Gajić R (2015) Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals. Phys Rev Appl 3:064007

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (1167040679, 50902034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengpeng Hu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hu, C., Tian, Q. et al. Ultrahigh-Q and Polarization-Independent Terahertz Metamaterial Perfect Absorber. Plasmonics 15, 1943–1947 (2020). https://doi.org/10.1007/s11468-020-01221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01221-8

Keywords

Navigation