Skip to main content
Log in

Systematic Evolution of Resonant Coupling Behavior Between Surface Plasmon Polaritons and Multi-waveguide Modes in Metal-Dielectric Multi-layers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A multi-layer structure consisting of metal and dielectric layers which allows coupling between surface plasmon polaritons and waveguide modes is studied by calculating reflectivity curves of incident light. A wide waveguide structure is employed to ensure SPP resonance with different order waveguide modes when varying coupling layer thicknesses. Multi-hybrid plasmonic waveguide modes (HPWG) are formed in the coupled system. The weight fractions of metal SPP deduced from losses of HPWG modes are calculated for each hybridized mode, which can be considered as a parameter of evaluating coupling strength. Three different evolution stages for hybrid modes are clearly distinguished based on the variation of loss with spacer layer thickness. The interaction between SPP and waveguide experiences a series of change from weak Fano resonance, via strong coupling, finally to weak coupling process. In case of strong coupling regime, the contribution of metal SPP for low order hybrid modes starts to increase and then decreases with decreasing spacer layer thicknesses. Furthermore, difference of resonant behavior for hybrid modes in both weak coupling stages is analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hayashi S, Nesterenko DV, Sekkat Z (2015) Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors. Appl Phys Express 8(2):022201

    Article  CAS  Google Scholar 

  2. Kolesov R, Grotz B, Balasubramanian G, Stoehr RJ, Nicolet AAL, Hemmer PR, Jelezko F, Wrachtrup J (2009) Wave-particle duality of single surface plasmon polaritons. Nat Phys 5(7):470–474

    Article  CAS  Google Scholar 

  3. Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T (1997) Guiding of a one-dimensional optical beam with nanometer diameter. Opt Lett 22(7):475–477

    Article  CAS  Google Scholar 

  4. Di Martino G, Sonnefraud Y, Kena-Cohen S, Tame M, Oezdemir SK, Kim MS, Maier SA (2012) Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett 12(5):2504–2508

    Article  CAS  Google Scholar 

  5. Bahador H, Heidarzadeh HJP (2020) Analysis and simulation of a novel localized surface plasmonic highly sensitive refractive index sensor.1-7

  6. Maier SAJSB (2007) Plasmonics : fundamentals and applications. 52 (11):49–74

  7. Chuang C-C, Chu H-C, Huang S-B, Chang W-S, Tuan H-Y (2020) Laser-induced plasmonic heating in copper nanowire fabric as a photothermal catalytic reactor Chem Eng J 379

  8. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  9. Liu K, Yang H, Mao H, Song C, Wang J (2019) Tunable Fano resonances and improved sensitivity in waveguide-coupled surface plasmon resonance sensors with a bimetallic layer. Journal of Physics D-Applied Physics 52(41):415202

    Article  CAS  Google Scholar 

  10. Veronis G, Fan SH (2005) Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30(24):3359–3361

    Article  Google Scholar 

  11. Alam MZ, Meier J, Aitchison JS, Mojahedi M (2010) Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Opt Express 18(12):12971–12979

    Article  CAS  Google Scholar 

  12. Alam MZ, Aitchison JS, Mojahedi M (2014) A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev 8(3):394–408

    Article  CAS  Google Scholar 

  13. Alam MZ, Aitchison JS, Mojahedi M (2013) Theoretical analysis of hybrid plasmonic waveguide. Ieee Journal of Selected Topics in Quantum Electronics 19(3):4602008

    Article  CAS  Google Scholar 

  14. Chen L, Zhang T, Li X, Huang W (2012) Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Opt Express 20(18):20535–20544

    Article  Google Scholar 

  15. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    Article  CAS  Google Scholar 

  16. Bian Y, Zheng Z, Zhao X, Zhu J, Zhou T (2009) Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt Express 17(23):21320–21325

    Article  CAS  Google Scholar 

  17. Bahrami F, Alam MZ, Aitchison JS, Mojahedi M (2013) Dual polarization measurements in the hybrid plasmonic biosensors. Plasmonics 8(2):465–473

    Article  CAS  Google Scholar 

  18. Zheng G, Zou X, Chen Y, Xu L, Rao W (2017) Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications. Opt Mater 66:171–178

    Article  CAS  Google Scholar 

  19. Dai D, Shi Y, He S, Wosinski L, Thylen L (2011) Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express 19(14):12925–12936

    Article  CAS  Google Scholar 

  20. Zhang J, Cai L, Bai W, Xu Y, Song G (2011) Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. Opt Lett 36(12):2312–2314

    Article  CAS  Google Scholar 

  21. Abramov AS, Evseev DA, Sementsov DI (2019) Dispersion of a surface plasmon polaritons in a thin dielectric films surrounded by a two graphene layers Optik 195

  22. Li H, Noh JW, Chen Y, Li M (2013) Enhanced optical forces in integrated hybrid plasmonic waveguides. Opt Express 21(10):11839–11851

    Article  Google Scholar 

  23. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  CAS  Google Scholar 

  24. Wu L, Guo J, Xu H, Dai X, Xiang Y (2016) Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes. Photonics Research 4(6):262–266

    Article  CAS  Google Scholar 

  25. Xiao S, Wang T, Jiang X, Yan X, Cheng L, Wang B, Xu C (2017) Strong interaction between graphene layer and Fano resonance in terahertz metamaterials. Journal of Physics D-Applied Physics 50(19):195101

    Article  CAS  Google Scholar 

  26. Sekkat Z, Hayashi S, Nesterenko DV, Rahmouni A, Refki S, Ishitobi H, Inouye Y, Kawata S (2016) Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement. Opt Express 24(18):20080–20088

    Article  CAS  Google Scholar 

  27. Hayashi S, Nesterenko DV, Rahmouni A, Sekkat Z (2016) Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes. Appl Phys Lett 108(5):051101

    Article  CAS  Google Scholar 

  28. Zhu X, Zhang S, Shi H, Zheng M, Wang Y, Wu R, Quan J, Zhang J, Duan HJP (2020) Plasmonic Fano resonance in homotactic aluminum nanorod trimer: the key role of coupling gap.1-7

  29. Zheng G, Cong J, Xu L, Wang J (2017) High-resolution surface plasmon resonance sensor with Fano resonance in waveguide-coupled multilayer structures. Appl Phys Express 10(4):042202

    Article  Google Scholar 

  30. Dyshlyuk AV, Vitrik OB, Eryusheva UA (2018) Waveguide-based refractometers using bulk, long-and short-range surface plasmon modes: comparative study. J Lightwave Technol 36(23):5319–5326

    Article  CAS  Google Scholar 

  31. Hayashi S, Nesterenko DV, Sekkat Z (2015) Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing. Journal of Physics D-Applied Physics 48(32):325303

    Article  CAS  Google Scholar 

  32. Chen Q, Liu J, Yang H-M, Liu H-S, Wei Y, Yuan B-L, Li J, Zhao K (2018) Research on tunable distributed SPR sensor based on bimetal film. Appl Opt 57(26):7591–7599

    Article  CAS  Google Scholar 

  33. You Q, Zhu J-Q, Guo J, Wu L-M, Dai X-Y, Xiang Y-J (2018) Giant Goos-Hanchen shifts of waveguide coupled long-range surface plasmon resonance mode. Chinese Physics B 27(8):087302

    Article  CAS  Google Scholar 

  34. Huang WP (1994) Coupled-mode theory for optical wave-guides - an overview. Journal of the Optical Society of America a-Optics Image Science and Vision 11(3):963–983

    Article  Google Scholar 

  35. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media, Published

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No.11804301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changsheng Song or Jiqing Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

See the supplementary material for the calculated FWHM, (ESPP/EWG)2 and propagation loss as a function of mode numbers with various coupling thicknesses for t = 1000 nm sample (as shown in Fig. S1), and the dependence of loss as a function of d for t = 1000 nm sample (as shown in Fig. S2).

ESM 1

(PNG 113 kb)

High Resolution (EPS 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, Z., Liu, K. et al. Systematic Evolution of Resonant Coupling Behavior Between Surface Plasmon Polaritons and Multi-waveguide Modes in Metal-Dielectric Multi-layers. Plasmonics 15, 1967–1975 (2020). https://doi.org/10.1007/s11468-020-01219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01219-2

Keywords

Navigation