Skip to main content
Log in

Aluminum-Based Deep-Ultraviolet Surface Plasmon Resonance Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An aluminum-based deep-ultraviolet surface plasmon resonance (DUV-SPR) sensor is promising for biological applications. Design aspects of a DUV-SPR sensor are here considered by using Fresnel multilayer model. Angular and wavelength interrogation modes are used, where fused silica, sapphire, and acrylic solacryl ultraviolet transmittance (acrylic SUVT) are used as optical substrates. Aluminum at its oxidized state (alumina) is also considered as an aluminum overlayer. Our 4-layer Kretschmann-Raether-based SPR sensor is applied for gaseous and aqueous solutions, where some figures of merit are used to analyze the sensor performance. Values for sensitivity, linewidth (FWHM, full width at half maximum), and FOM (figure of merit or quality factor) are calculated. Resolution is also found and compared with other devices by using a known formulation. The results indicate that our sensor has a higher sensitivity for both gaseous and aqueous solutions when compared with the visible light-based sensor. For aqueous solutions, analyte is simulated as a bulk or a monolayer. Therefore, DUV-SPR sensors are a good alternative to the conventional visible-based SPR devices, where the performance is similar or higher for some conditions, having a higher affinity for some proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bo Liedberg CN, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 14:299–304

    Article  Google Scholar 

  2. Davy G, Stephen KG (2017) Aluminium plasmonics. Proceedings 1

  3. Ferreira E, Lima J, Alves-Balvedi R, Bonan P, Medeiros E, Goulart L, Lima A, Neff H, Oliveira L, Castellano L, Araújo A, Moreira C (2017) Leishmania spp. detection using a surface plasmon resonance biosensor. Proceedings 1

  4. Bokken GCAM, Corbee RJ, van Knapen F, Bergwerff AA (2006) Immunochemical detection of Salmonella group b, d and e using a optical surface plasmon resonance biosensor. Microbiology Letters 22:75–82

    Google Scholar 

  5. Bokken GCAM, Corbee RJ, van Knapen F, Bergwerff AA (2006) Immunochemical detection of Salmonella group b, d and e using a optical surface plasmon resonance biosensor. Microbiology Letters 22:75–82

    Google Scholar 

  6. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sensors Actuators B 107:40–46

    Article  CAS  Google Scholar 

  7. Gutiérrez Y, de la Osa RA, Ortiz D, Saiz JM, González F, Moreno F (2018) Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium. Appl Sci 8

  8. Neff H, Beeby T, Lima AMN, Boore M, Almeida LAL (2006) Dc-sheet resistance as sensitive monitoring tool of protein immobilization on thin metal films. Biosensors and Biolectronics 21:1745–1752

    Google Scholar 

  9. Hehlen MP, Wiggins BW, Favalli A, Iliev M, Ianakiev KD (2018) Light propagation in a neutron detector based on 6Li glass scintillator particles in an organic matrix. J Appl Phys 124

  10. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  PubMed  Google Scholar 

  11. Homola J (2006) Surface plasmon resonance based sensors. Springer, Amsterdan

    Book  Google Scholar 

  12. Homola J, Yee S, Gauglitz G (1999) Surface plasmon resonance: review. Sensors Actuators B 544:3–15

    Article  Google Scholar 

  13. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2013) Aluminum for plasmonics. ACS Nano 8:834–840

    Article  CAS  PubMed  Google Scholar 

  14. Li W, Ren K, Zhou J (2016) Aluminum-based localized surface plasmon resonance for biosensing. TrAC - Trends in Analytical Chemistry 80:486–494

    Article  CAS  Google Scholar 

  15. Maidecchi G, Gonella G, Proietti Zaccaria R, Moroni R, Anghinolfi L, Giglia A, Nannarone S, Mattera L, Dai HL, Canepa M, Bisio F (2013) Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays. ACS Nano 7:5834–5841

    Article  CAS  PubMed  Google Scholar 

  16. Mcmahon JM, Schatz GC, Gray SK (2013) Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys 17:5415–5423

    Article  Google Scholar 

  17. de Melo AA, da Silva TB, da Silva Santiago MF, da Silva Moreira C, Cruz RMS (2019) Theoretical analysis of sensitivity enhancement by graphene usage in optical fiber surface plasmon resonance sensors. IEEE Transactions on Instrumentation and Measurement 68:1554–1560

    Article  Google Scholar 

  18. Moreira C, Lima A, Neff H, Thirstrup C (2008) Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold–water interface. Sensors Actuators B Chem 134:854–862

    Article  CAS  Google Scholar 

  19. Moreira CS, Wang Y, Blair S (2019) Substrate material influence on the deep-ultraviolet surface plasmon resonance sensors using aluminum films. IEEE Sensors 2019 Conference 134:854–862

    Google Scholar 

  20. Morsy AM, Povinelli ML, Hennessy J (2018) Highly selective ultraviolet aluminum plasmonic filters on silicon. Opt Express 26:22650

    Article  CAS  PubMed  Google Scholar 

  21. Naimushin AN, Spinelli CB, Soelberg SD, Mann T, Stevens RC, Chinowsly T, Kauffman P, Yee S, Furlong CE (2005) Airborne analyte detection with an aircraft-adapted surface plasmon resonance sensor system. Sensors and Actuators B 104:237–248

    Article  CAS  Google Scholar 

  22. Neff H, Zong W, Lima AMN, Borre M, Holzhüter G (2006) Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films 496:688–697

    Article  CAS  Google Scholar 

  23. Oliveira LC (2016) Construção e caracterização de sensores spr: influência da camada metálica e do substrato dielétrico. Ph.D. thesis, Universidade Federal de Campina Grande

  24. Oliveira LC, Herbster A, Moreira CS, Neff H, Lima AMN (2017) SPR-instrumental features of thin aluminum films in aqueous solution : conditions and limitations for disposable diagnostic applications. Phys Chem Chem Phys, pp 1–8

  25. Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17:16505–16517

    Article  CAS  PubMed  Google Scholar 

  26. Polyanskiy M (2020) Refractive index database. https://refractiveindex.info/

  27. Raether H (1988) Surface plasmons: on smooth and rough surfaces and on gratings springer tracts in modern physics, vol 111. Amsterdan, Netherlands

    Book  Google Scholar 

  28. Rouf HK, Haque T (2018) Performance enhancement of ag-au bimetallic surface plasmon resonance biosensor using inp. Progress in Electromagnetics Research M 76:31–42

    Article  Google Scholar 

  29. Schasfoort RBM, Tudos AJ (eds) (2008) Handbook of surface plasmon resonance, 1st edn. The Royal Society of Chemistry, London

  30. da Silva Moreira C (2010) Projeto e realização de um biochip óptico para aplicações biolóógicas baseado no princípio de ressonância de plásmons de superfície. Ph.D. thesis, Universidade Federal de Campina Grande

  31. de Souza Filho CA, Lima AMN, Neff FH (2017) Modeling and temperature drift compensation method for surface plasmon resonance-based sensors. IEEE Sensors J 17:6246–6257

    Article  Google Scholar 

  32. Tanabe I, Tanaka YY, Ryoki T, Watari K, Goto T, Kikawada M, Inami W, Kawata Y, Ozaki Y (2016) Direct optical measurements of far- and deep-ultraviolet surface plasmon resonance with different refractive indices. Opt Express 24:21886

    Article  CAS  PubMed  Google Scholar 

  33. Tanabe I, Tanaka YY, Watari K, Hanulia T, Goto T, Inami W, Kawata Y, Ozaki Y (2017) Aluminum film thickness dependence of surface plasmon resonance in the far- and deep-ultraviolet regions. Chem Lett 46:1560–1563

    Article  CAS  Google Scholar 

  34. Tanabe I, Tanaka YY, Watari K, Hanulia T, Goto T, Inami W, Kawata Y, Ozaki Y (2017) Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films. Scientific Reports 7:1–7

    Article  CAS  Google Scholar 

  35. Watanabe Y, Inami W, Kawata Y (2011) Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission. J Appl Phys 109:19–22

    Article  CAS  Google Scholar 

  36. Yamamoto M (2002) Surface plasmon resonance (spr) theory: tutorial. Review of Polarograph 48(3):209–237

    Article  Google Scholar 

Download references

Funding

Instituto Federal da Paraiba provided financial support for the author Cleumar Moreira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleumar Moreira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, C., Wang, Y., Blair, S. et al. Aluminum-Based Deep-Ultraviolet Surface Plasmon Resonance Sensor. Plasmonics 15, 1891–1901 (2020). https://doi.org/10.1007/s11468-020-01207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01207-6

Keywords

Navigation