Skip to main content
Log in

Simplified Design of Quad-Band Terahertz Absorber Based on Periodic Closed-Ring Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Multiple-band metamaterial absorbers as an important branch of metamaterial-based resonant devices have shown considerable application prospects in real life. However, current designs have many shortcomings in the realization of multiple-band absorption, including complex pattern structure, time-consuming fabrication steps, and strong interaction between sub-elements. Herein, a simple design of multiple-band metamaterial absorber based on single metallic resonator is presented. Basic cell of the multiple-band absorption is formed by a square metallic patch (cut by a concentric air gap) placed on a metallic mirror separated by an insulating medium material. The metamaterial structure can interact strongly with the incident beam to produce the fundamental mode resonance, third-order resonance, and two other resonances resulted from the concentric air gap introduction. The combining effect of the four discrete resonance modes provides the ability to achieve quad-band absorption. The quad-band absorption shows great dependence on the structure dimensions. Based on this, we further design a kind of multiple-band absorption having the adjustable number of absorption peaks by introducing photosensitive silicon material in the initial area of the air gap. The number of resonance peaks can be tuned flexibly from quad-band absorption to dual-band absorption by changing the conductivity (i.e., material property) of photosensitive silicon material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Watts CM, Liu X, Padilla WJ (2012) Metamaterial Electromagnetic Wave Absorbers. Adv Mater 24:OP98. https://doi.org/10.1002/adma.201200674

  2. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  PubMed  Google Scholar 

  3. Wu PC, Liao CY, Chen JW, Tsai DP (2017) Isotropic absorption and sensor of vertical split-ring resonator. Adv Opt Mater 5:1600581

    Article  CAS  Google Scholar 

  4. Yao G, Ling F, Yue J, Luo C, Ji J, Yao J (2016) Dual-band tunable perfect metamaterial absorber in the THz range. Opt Express 24:1518–1527

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Yan M, Pang Y, Wang J, Ma H, Qua S, Chen H, Xu C, Feng M (2015) Ultra-thin quadri-band metamaterial absorber based on spiral structure. Appl Phys A Mater Sci Process 118:443–447

    Article  CAS  Google Scholar 

  6. Kim JH, Hokmabadi MP, Balci S, Rivera E, Wilbert D, Kung P, Kim SM (2016) Investigation of robust flexible conformal THz perfect metamaterial absorber. Appl Phys A Mater Sci Process 122:362

    Article  CAS  Google Scholar 

  7. Chen HT (2012) Interference theory of metamaterial perfect absorbers. Opt Express 20:7165–7172

    Article  PubMed  Google Scholar 

  8. Zhang B, Hendrickson J, Guo J (2013) Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. J Opt Soc Am B 30:656

    Article  Google Scholar 

  9. Ma Y, Chen Q, Grant J, Saha SC, Khalid A, Cumming DRS (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36:945–947

    Article  PubMed  Google Scholar 

  10. Bhattacharyya S, Ghosh S, Chaurasuya D, Srivastava KV (2015) Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl Phys A Mater Sci Process 118:207–215

    Article  CAS  Google Scholar 

  11. Zhong J, Huang Y, Wen G, Sun H, Wang P, Gordon O (2012) Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs. Appl Phys A Mater Sci Process 108:329–335

    Article  CAS  Google Scholar 

  12. Bhattacharyya S, Srivastava KV (2014) J Appl Phys 115:104503

    Article  CAS  Google Scholar 

  13. Ayop O, Rahim MKA, Murad NA, Samsuri NA (2016) Dual-resonant polarization-independent and wide-angle metamaterial absorber in X-band frequency. Appl Phys A Mater Sci Process 122:374

    Article  CAS  Google Scholar 

  14. Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407

    Article  CAS  PubMed  Google Scholar 

  15. Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui TJ (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101:154102

    Article  CAS  Google Scholar 

  16. Park JW, Tuong PV, Rhee JY, Kim KW, Jang WH, Choi EH, Chen LY, Lee YP (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21:9691

    Article  PubMed  Google Scholar 

  17. Bhattacharyya S, Ghosh S, Srivastava KV (2013) Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J Appl Phys 114:094514

    Article  CAS  Google Scholar 

  18. Bhattacharyya S, Ghosh S, Srivastava KV (2014) Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber. AIP Adv 4:097127

    Article  CAS  Google Scholar 

  19. Liu S, Zhuge J, Ma S, Chen H, Bao D, He Q, Zhou L, Cui TJ (2015) A bi-layered quad-band metamaterial absorber at terahertz frequencies. J Appl Phys 118:245304

    Article  CAS  Google Scholar 

  20. Wang BX, Wang GZ, Wang LL (2016) Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11:523–530

    Article  CAS  Google Scholar 

  21. Wang BX, Wang GZ, Sang T (2016) Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J Phys D 49:165307

    Article  CAS  Google Scholar 

  22. Wang BX (2017) Quad-Band Terahertz Metamaterial Absorber Based on the Combining of the Dipole and Quadrupole Resonances of Two SRRs. IEEE J Select Top Quantum Electron 23:4700107. https://doi.org/10.1109/JSTQE.2016.2547325

  23. Wang BX, Wang GZ, Huang WQ (2017) Single metamaterial resonator having five-band terahertz near-perfect absorption. IEEE Photon Technol Lett 29:1888–1891

    Article  CAS  Google Scholar 

  24. Wang BX, Tang C, Niu Q, He Y, Chen T (2019) Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers. Nanoscale Res Lett 14:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang BX, He Y, Lou P, Xing W (2020) Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanocale Adv 2:763–769

    Article  CAS  Google Scholar 

  26. Wang BX, He Y, Lou P, Huang WQ, Pi F (2020) Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators. Results Phys 16:102930

    Article  Google Scholar 

  27. Wang BX, He Y, Xu N, Wang X, Wang Y, Cao J (2020) Design of dual-band polarization controllable metamaterial absorber at terahertz frequency. Results Phys. 17:103077

    Article  Google Scholar 

  28. Shen NH, Kafesaki M, Koschny T, Zhang L, Economou EN, Soukoulis CM (2009) Broadband blueshift tunable metamaterials and dual-band switches. Phys Rev B 79:161102

    Article  CAS  Google Scholar 

  29. Chen HT, Ohara JF, Azad AK, Taylor AJ, Averitt RD (2008) Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photon 2:295–298

    Article  CAS  Google Scholar 

  30. Chen L, Liao DG, Guo XG, Zhao JY, Zhu YM, Zhuang SL (2019) Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review. Front Inform Technol Electron Engine 20:591–607

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (21603087, 11647143), the Natural Science Foundation of Jiangsu (BK20160178, BK20160189), the China Postdoctoral Science Foundation (2019 M651692), the Jiangsu Postdoctoral Science Foundation (2018K113C), and the Fundamental Research Funds for Central Universities (JUSRP51721B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ben-Xin Wang or Fuwei Pi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, P., Wang, BX., He, Y. et al. Simplified Design of Quad-Band Terahertz Absorber Based on Periodic Closed-Ring Resonator. Plasmonics 15, 1645–1651 (2020). https://doi.org/10.1007/s11468-020-01184-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01184-w

Keywords

Navigation