Skip to main content
Log in

Surface Plasmon Coupling with Radiating Dipole for Enhancing the Emission Efficiency and Light Extraction of a Deep Ultraviolet Light Emitting Diode

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we numerically investigated the emission characteristics of surface plasmon (SP)-enhanced deep ultraviolet light emitting diode (DUV-LED) by employing Al/Al2O3 core-shell nanoparticle(NP) structure on the p-GaN contact layer by utilizing finite-difference time-domain (FDTD) method. The results suggest that normalized dipole power of TE (TM) polarization is enhanced (inhibited) in the DUV range by coupling with in-plane substrate localized surface plasmon (LSP) mode from Al/Al2O3 core-shell nanoparticle (NP). It is found that normalized upward extraction power for both polarizations can also be significantly increased by scattering effect when photons and excitons coupling with in-plane air LSP mode induced on the NP; thus, the light extraction efficiency (LEE) can be substantially enhanced. The depth d between quantum well (QW) and NP and NP size have a remarkable influence on LSP resonance wavelength. Through careful regulation of NP size and depth d, the emission characteristics in DUV range (240–280 nm) exhibit a considerable amelioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kneissl M, Kolbe T, Chua C, Kueller V, Lobo N, Stellmach J, Knauer A, Rodriguez H, Einfeldt S, Yang Z (2010) Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol 26(1):014036

    Article  CAS  Google Scholar 

  2. Davitt K, Song Y-K, Patterson WR, Nurmikko AV, Gherasimova M, Han J, Pan Y-L, Chang RK (2005) 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. Opt Express 13(23):9548–9555

    Article  CAS  PubMed  Google Scholar 

  3. Song K, Mohseni M, Taghipour F (2016) Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review. Water Res 94:341–349

    Article  CAS  PubMed  Google Scholar 

  4. Würtele M, Kolbe T, Lipsz M, Külberg A, Weyers M, Kneissl M, Jekel M (2011) Application of GaN-based ultraviolet-C light emitting diodes–UV LEDs–for water disinfection. Water Res 45(3):1481–1489

    Article  CAS  PubMed  Google Scholar 

  5. Khan A, Balakrishnan K, Katona T (2008) Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics 2(2):77

    Article  CAS  Google Scholar 

  6. Nam K, Li J, Nakarmi M, Lin J, Jiang H (2004) Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl Phys Lett 84(25):5264–5266

    Article  CAS  Google Scholar 

  7. Hirayama H, Maeda N, Fujikawa S, Toyoda S, Kamata N (2014) Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn J Appl Phys 53(10):100209

    Article  CAS  Google Scholar 

  8. Chen X, Ji C, Xiang Y, Kang X, Shen B, Yu T (2016) Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Opt Express 24(10):A935–A942

    Article  CAS  PubMed  Google Scholar 

  9. Djavid M, Mi Z (2016) Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl Phys Lett 108(5):051102

    Article  CAS  Google Scholar 

  10. Ooi YK, Liu C, Zhang J (2017) Analysis of polarization-dependent light extraction and effect of passivation layer for 230-nm AlGaN nanowire light-emitting diodes. IEEE Photon J 9(4):1–12

    Article  Google Scholar 

  11. Ryu H-Y, Choi I-G, Choi H-S, Shim J-I (2013) Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Appl Phys Express 6(6):062101

    Article  CAS  Google Scholar 

  12. Alias MS, Janjua B, Zhao C, Priante D, Alhamoud AA, Tangi M, Alanazi LM, Alatawi AA, Albadri AM, Alyamani AY (2017) Enhancing the light-extraction efficiency of an AlGaN nanowire ultraviolet light-emitting diode by using nitride/air distributed Bragg reflector nanogratings. IEEE Photon J 9(5):1–8

    Article  Google Scholar 

  13. Oder T, Kim K, Lin J, Jiang H (2004) III-nitride blue and ultraviolet photonic crystal light emitting diodes. Appl Phys Lett 84(4):466–468

    Article  CAS  Google Scholar 

  14. Chang W-Y, Kuo Y, Yao Y-F, Yang C, Wu Y-R, Kiang Y-W (2018) Different surface plasmon coupling behaviors of a surface Al nanoparticle between TE and TM polarizations in a deep-UV light-emitting diode. Opt Express 26(7):8340–8355

    Article  CAS  PubMed  Google Scholar 

  15. Kuo Y, Chen H-T, Chang W-Y, Chen H-S, Yang C, Kiang Y-W (2014) Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device. Opt Express 22(101):A155–A166

    Article  PubMed  Google Scholar 

  16. Wang J, Yang G, Zhang Q, Gao S, Zhang R, Zheng Y (2017) Localized surface plasmon-enhanced deep-UV light-emitting diodes with Al/AlO asymmetrical nanoparticles. Plasmonics 12(3):843–848. https://doi.org/10.1007/s11468-016-0333-z

    Article  CAS  Google Scholar 

  17. Kuo Y, Su C-Y, Hsieh C, Chang W-Y, Huang C-A, Kiang Y-W, Yang C (2015) Surface plasmon coupling for suppressing p-GaN absorption and TM-polarized emission in a deep-UV light-emitting diode. Opt Lett 40(18):4229–4232

    Article  CAS  PubMed  Google Scholar 

  18. Kuo Y, Chang W-Y, Chen H-S, Kiang Y-W, Yang C (2013) Surface plasmon coupling with a radiating dipole near a Ag nanoparticle embedded in GaN. Appl Phys Lett 102(16):161103

    Article  CAS  Google Scholar 

  19. Yin J, Li Y, Chen S, Li J, Kang J, Li W, Jin P, Chen Y, Wu Z, Dai J (2014) Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells. Adv Opt Mater 2(5):451–458

    Article  CAS  Google Scholar 

  20. Lin C-H, Su C-Y, Kuo Y, Chen C-H, Yao Y-F, Shih P-Y, Chen H-S, Hsieh C, Kiang Y-W, Yang C (2014) Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles. Appl Phys Lett 105(10):101106

    Article  CAS  Google Scholar 

  21. He J, Wang S, Chen J, Wu F, Dai J, Long H, Zhang Y, Zhang W, Feng ZC, Zhang J (2018) Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer. Nanotechnology 29(19):195203

    Article  CAS  PubMed  Google Scholar 

  22. Edward DP, Palik I (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  23. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2013) Aluminum for plasmonics. ACS Nano 8(1):834–840

    Article  CAS  PubMed  Google Scholar 

  24. Yao S, Guo Z, Sun H (2017) Emission enhancement of surface plasmon coupled blue LED with a surface Al nanoparticle. IEEE Photon Technol Lett 29(12):1011–1014

    Article  CAS  Google Scholar 

  25. Zhang Y, Sun H, Zhang S, Li S, Wang X, Zhang X, Liu T, Guo Z (2019) Enhancing luminescence in all-inorganic perovskite surface plasmon light-emitting diode by incorporating Au-Ag alloy nanoparticle. Opt Mater 89:563–567

    Article  CAS  Google Scholar 

  26. Kuo Y, Ting S-Y, Liao C-H, Huang J-J, Chen C-Y, Hsieh C, Lu Y-C, Chen C-Y, Shen K-C, Lu C-F (2011) Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode. Opt Express 19(104):A914–A929

    Article  CAS  PubMed  Google Scholar 

  27. Hirayama H, Yatabe T, Noguchi N, Ohashi T, Kamata N (2007) 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett 91(7):071901

    Article  CAS  Google Scholar 

  28. Lee I-H, Jang L-W, Polyakov AY (2015) Performance enhancement of GaN-based light emitting diodes by the interaction with localized surface plasmons. Nano Energy 13:140–173

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by Key Technology Research and Industrialization of GaN-Based Power Devices on 8-Inch Si Substrate for High-Frequency Switching Power Supply Applications of Guangdong Province, China (2019B010128002); Science and Technology Program Project for the Innovation of Forefront and Key Technology of Guangdong Province, China (2014B010119004, 2014B010121001); Institute of Science and Technology Collaborative Innovation Major Project of Guangzhou, China (201604010047); and Special Fund for Scientific and Technological Innovation and Development of Guangzhou – Foreign Science and Technology Cooperation Project, China (201807010083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Sun, H., Zhang, Y. et al. Surface Plasmon Coupling with Radiating Dipole for Enhancing the Emission Efficiency and Light Extraction of a Deep Ultraviolet Light Emitting Diode. Plasmonics 15, 881–887 (2020). https://doi.org/10.1007/s11468-019-01107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01107-4

Keywords

Navigation