Skip to main content
Log in

Localized Surface Plasmon-Enhanced Deep-UV Light-Emitting Diodes with Al/Al2O3 Asymmetrical Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, light-extraction enhancement induced by localized surface plasmons (LSPs) on asymmetrical design of metallic nanoparticles (NPs) for AlGaN deep-ultraviolet (UV) light-emitting diodes (LEDs) is investigated numerically. The systems under study consist of Al NPs with varying diameter separated by a nano-gap, and the symmetrical dimer NPs with different geometrical parameters are studied for reference. We have demonstrated that tunable plasmonic NPs and spectral response can be controlled by varying the size of the nanoparticles and nano-gaps. It is found that the enhancement of the electric field and the peak position are subject to geometrical characteristics of the NP components in different manners for symmetrical and asymmetrical systems, respectively. High enhancement ratio for UV wavelength can be obtained by tuning parameters of asymmetrical system, which is potential for improving the performance of deep-UV LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davitt K, Song YK, Patterson WR, Nurmikko AV, Gherasimova M, Han J, Chang RK (2005) 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. Opt Express 13(23):9548–9555

    Article  CAS  PubMed  Google Scholar 

  2. Orton JW, Foxon CT (1998) Group III nitride semiconductors for short wavelength light-emitting devices. Rep Prog Phys 61(1):1-+

    Article  CAS  Google Scholar 

  3. Alimova A, Katz A, Sriramoju V, Budansky Y, Bykov AA, Zeylikovich R, Alfano RR (2007) Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection. J Biomed Opt 12(1):014004

    Article  PubMed  Google Scholar 

  4. Shatalov M, Yang J, Sun W, Kennedy R, Gaska R, Liu K (2009) Efficiency of light emission in high aluminum content AlGaN quantum wells. J Appl Phys 105(7):073103

    Article  CAS  Google Scholar 

  5. Huang K, Gao N, Wang C, Chen X, Li J, Li S (2014) Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localised surface plasmons. Sci Rep 4

  6. Gao N, Huang K, Li J, Li S, Yang X, Kang, J (2012) Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Sci Rep 2

  7. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3(9):601–605

    Article  CAS  PubMed  Google Scholar 

  8. Okamoto K, Niki I, Scherer A, Narukawa Y, Mukai T, Kawakami Y (2005) Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl Phys Lett 87(7):071102

    Article  CAS  Google Scholar 

  9. Kuo Y, Ting SY, Liao CH, Huang JJ, Chen CY, Hsieh C, Yang CC (2011) Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode. Opt Express 19(Suppl 4):A914–A929

    Article  CAS  PubMed  Google Scholar 

  10. Vilela D, Gonzalez MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. Anal Chim Acta 751:24–43

    Article  CAS  PubMed  Google Scholar 

  11. Zhang LL, Ma FF, Kuang YF, Cheng S, Long YF, Xiao QG (2016) Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates. Spectrochim Acta A Mol Biomol Spectrosc 154:98–102

    Article  CAS  PubMed  Google Scholar 

  12. Green MA, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photonics 6(3):130–132

    Article  CAS  Google Scholar 

  13. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038

    Article  CAS  PubMed  Google Scholar 

  14. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6(9):2060–2065

    Article  CAS  PubMed  Google Scholar 

  15. Huang WY, Qian W, El-Sayed MA (2004) Coherent vibrational oscillation in gold prismatic monolayer periodic nanoparticle arrays. Nano Lett 4(9):1741–1747

    Article  CAS  Google Scholar 

  16. Bouali A, Haxha S, AbdelMalek F, Dridi M, Bouchriha H (2014) Tuning of plasmonic nanoparticle and surface enhanced wavelength shifting of a nanosystem sensing using 3-D-FDTD method. IEEE J Quantum Electron 50(8):651–657

    Article  CAS  Google Scholar 

  17. Taguchi A, Saito Y, Watanabe K, Yijian S, Kawata S (2012) Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures. Appl Phys Lett 101(8):081110

    Article  CAS  Google Scholar 

  18. Henson J, Dimakis E, DiMaria J, Li R, Minissale S, Dal Negro L, Paiella R (2010) Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays. Opt Express 18(20):21322–21329

    Article  CAS  PubMed  Google Scholar 

  19. Chan GH, Zhao J, Schatz GC, Van Duyne RP (2008) Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J Phys Chem C 112(36):13958–13963

    Article  CAS  Google Scholar 

  20. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2014) Aluminum for plasmonics. ACS Nano 8(1):834–840

    Article  CAS  PubMed  Google Scholar 

  21. Shur MS, Gaska R (2010) Deep-ultraviolet light-emitting diodes. IEEE Trans Electron Dev 57(1):12–25

    Article  CAS  Google Scholar 

  22. Hirayama H, Fujikawa S, Kamata N (2015) Recent progress in AlGaN-based deep-UV LEDs. Electron Commun Jpn 98(5):1–8

    Article  Google Scholar 

  23. Fan X, Zheng W, Singh DJ (2014) Light scattering and surface plasmons on small spherical particles. Light-Sci Appl 3:e179

    Article  CAS  Google Scholar 

  24. Lin YZ, Liu DY, Gao JW (2015) Numeric tuning of surface plasmon enhanced spontaneous emission inducted by Nano-metallic particle systems embedded in GaN-based LED. J Disp Technol 11(3):296–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the China Postdoctoral Science Foundation (Nos. 2014M561623, 2014M551559), National Natural Science Foundation of Special Theoretical Physics (No. 11547168), and Natural Science Foundation of Jiangsu Province (Nos. BK20150158, BM2014402), Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1401013B), the Fundamental Research Funds for Central Universities (Nos. JUSRP51628B, JUSRP51517), Anhui Provincial Natural Science Foundation (No. 1508085MF135), and Undergraduate Training Programs for Innovation of Jiangnan University (No. 2015309Y).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofeng Yang or Shumei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, G., Zhang, Q. et al. Localized Surface Plasmon-Enhanced Deep-UV Light-Emitting Diodes with Al/Al2O3 Asymmetrical Nanoparticles. Plasmonics 12, 843–848 (2017). https://doi.org/10.1007/s11468-016-0333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0333-z

Keywords

Navigation