Skip to main content
Log in

Hydrodynamic Modeling of Spin-Polarized Edge Magnetoplasmons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel method, the so-called magneto-optical interaction, is gaining increasing interest for realizing the localization of the electromagnetic radiation to subwavelength scales and enhancement of the local electric fields. We investigate spin-polarized edge magnetoplasmons based on the spin-dependent quantum hydrodynamic model, in a bounded two-dimensional electron gas with perpendicular magnetic field and an electromagnetic wave. The effects of the Fermi pressure associated with Pauli exclusion principle and quantum force due to the Bohm potential, and the effect of the spin-induced ponderomotive force, are taken into consideration. Full spin-polarized edge state exists at the boundary of the two-dimensional electron gas. Spin rotation occurs due to the magneto-optical kerr effect. The existence of the electromagnetic field could reduce the spin amplitude and increase the spin rotation time, since their magnitude oscillates between positive and negative values and hinders the spin precession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mast DB, Dahm AJ, Fetter AL (1985) Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid. Phys Rev Lett 54:1706

    Article  CAS  Google Scholar 

  2. Fetter AL (1985) Edge magnetoplasmons in a bounded two-dimensional electron fluid. Phys Rev B 32:7676

    Article  CAS  Google Scholar 

  3. Manfredi G (2018) Preface to special topic: plasmonics and solid state plasmas

  4. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824

    Article  CAS  Google Scholar 

  5. Jin D, Lu L, Wang Z, Fang C, Joannopoulos JD, Soljačić M, Fu L, Fang NX (2016) Topological magnetoplasmon. Nat Commun 7:13486

    Article  CAS  Google Scholar 

  6. Principi A, Katsnelson MI, Vignale G (2016) Edge plasmons in two-component electron liquids in the presence of pseudomagnetic fields. Phys Rev Lett 117:196803

    Article  Google Scholar 

  7. Marklund M, Brodin G (2007) Dynamics of spin-1 2 quantum plasmas. Phys Rev Lett 98:025001

    Article  Google Scholar 

  8. Brodin G, Marklund M, Manfredi G (2008) Quantum plasma effects in the classical regime. Phys Rev Lett 100:175001

    Article  CAS  Google Scholar 

  9. Brodin G, Marklund M, Zamanian J, Stefan M (2011) Spin and magnetization effects in plasmas. Plasma Phys Controlled Fusion 53:074013

    Article  Google Scholar 

  10. Brodin G, Misra AP, Marklund M (2010) Spin contribution to the ponderomotive force in a plasma. Phys Rev Lett 105:105004

    Article  CAS  Google Scholar 

  11. Misra AP, Brodin G, Marklund M, Shukla PK (2010) Localized whistlers in magnetized spin quantum plasmas. Phys Rev E 82:056406

    Article  CAS  Google Scholar 

  12. Braun S, Asenjo FA, Mahajan SM (2012) Spin-gradient-driven light amplification in a quantum plasma. Phys Rev Lett 109:175003

    Article  Google Scholar 

  13. Hatke A, Zudov M, Watson J, Manfra MJ, Pfeiffer L, West K (2013) Evidence for effective mass reduction in GaAs/AlGaAs quantum wells. Phys Rev B 87:161307

    Article  Google Scholar 

  14. XFEL (2015) XFEL-European x-ray free electron laser. http://xfel.desy.de

  15. Fert A, Jaffres H (2001) Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys Rev 64:184420

    Article  Google Scholar 

  16. Buchner M, Kuczmik T, Oltscher M, Ciorga M, Korn T, Loher J, Schuh D, Schüller C, Bougeard D, Weiss D, et al. (2017) Optical investigation of electrical spin injection into an inverted two-dimensional electron gas structure. Phys Rev B 95:035304

    Article  Google Scholar 

  17. Zhang Y, Zhai F, Yi L (2016) Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas. Phys Lett A 380:3908

    Article  CAS  Google Scholar 

  18. Zhang Y, Gao M, Guo B (2017) Surface plasmon dispersion relation at an interface between thin metal film and dielectric using a quantum hydrodynamic model. Opt Commun 402:326

    Article  CAS  Google Scholar 

  19. Kikkawa J, Gupta J, Malajovich I, Awschalom D (2001) Spin coherence in semiconductors: storage, transport and reduced dimensionality. Physica E: Low-dimensional Systems and Nanostructures 9:194

    Article  CAS  Google Scholar 

  20. Wolf S, Awschalom D, Buhrman R, Daughton J, Von Molnar S, Roukes M, Chtchelkanova AY, Treger D (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488

    Article  CAS  Google Scholar 

  21. Boris J, Landsberg A, Oran E, Gardner J (1993) LCPFCT-a flux-corrected transport algorithm for solving generalized continuity equations. Tech Rep (DTIC Document)

  22. Song JC, Rudner MS (2016) Chiral plasmons without magnetic field. Proc Natl Acad Sci 113:4658–4663

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhai F, Guo B, Yi L, Jiang W (2017) Quantum hydrodynamic modeling of edge modes in chiral Berry plasmons. Phys Rev B 96:045104

    Article  Google Scholar 

  24. Griffiths J (1946) Anomalous high-frequency resistance of ferromagnetic metals. Nature 158:670

    Article  Google Scholar 

  25. Zavoisky E (1946) Spin magnetic resonance in the decimetre-wave region. J Phys USSR 10:197

    Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (NSFC) (11775164,11575135). This is also supported by the Fundamental Research Funds for the Central Universities (WUT: 2017IVA79, 2018B011, 2018IB009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, B. Hydrodynamic Modeling of Spin-Polarized Edge Magnetoplasmons. Plasmonics 14, 799–805 (2019). https://doi.org/10.1007/s11468-018-0860-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0860-x

Keywords

Navigation