Skip to main content
Log in

Spin force analysis using the Brillouin function for spin half particles in magnetised non-relativistic quantum plasma

  • Research Paper
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

The uncertainty of Heisenberg and exclusion concepts are applicable when electron wave functions overlap. Since fermions are affected by a spin force with the Brillouin function, Quantum magneto hydrodynamic equations have been developed for studying the spin force effects on the system. The Normal Mode Analysis method is used to solve the QHD equation for nonrelativistic degenerate inhomogeneous quantum plasma. Following linearization, the first order perturbation of the densities and velocities of plasma species are observed, which are used in Poission’s equation to obtain dispersion relation. Influence of spin force using Brillouin function for half spin particles along with Bohm Potential will be observed in a quantum plasma model consisting of degenerate electron along with non-degenrate positive ions. The results will have impact on both plasma-aided nanotechnology and the dispersion relation for quantum plasma instability

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are provided within the article (and any additional supplementary file).

References

  • Ahmad, R., Gul, N., Adnan, M., Khattak, F.Y.: Nonlinear electrostatic solitary pulses in magnetized quantum plasma with relative density effects of spin-up and spin-down electrons. Phys. Plasmas 23(11), 112112 (2016)

    Article  Google Scholar 

  • Ashish, Singh, S.: Dispersive features of electrostatic waves in bounded quantum plasma under the effect of ionization. J. Astrophys. Astron. 43(2), 59 (2022)

    Article  Google Scholar 

  • Aydin, R., Cavusoglu, H.: Influence of sodium dodecyl sulfate as a surfactant on the microstructural, morphological and optoelectronic characteristics of SILAR deposited CuO thin films. Mater. Res. Express 6(8), 086403 (2019)

    Article  CAS  Google Scholar 

  • Bharti, S.P., Singh, S.: Studies of growing waves in Hall thruster beam plasma under the influence of electron temperature. J. Astrophys. Astron. 43(2), 47 (2022)

    Article  Google Scholar 

  • Bonitz, M., Moldabekov, Z., Ramazanov, T.S.: Theoretical foundations of quantum hydrodynamics for plasmas. Phys. Plasmas 26(9), 0906601 (2019)

    Article  Google Scholar 

  • Brodin, G., Marklund, M., Manfredi, G.: Quantum plasma effects in the classical regime. Phys. Rev. Lett. 100(17), 175001 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Cadjan, M.G., Ivanov, M.F.: Langevin approach to plasma kinetics with Coulomb collisions. J. Plasma Phys. 61(1), 89–106 (1999)

    Article  Google Scholar 

  • Chaudhary, J.: Numerical study of instabiities in magnetized inhomogeneous plasmas under the effect of ionization. Contrib. Plasma Phys. 56(2), 113–25 (2016)

    Article  CAS  Google Scholar 

  • Chen, S., Li, C., Zha, X., Zhang, X., Xia, Z.: High-frequency surface waves in quantum plasmas with electrons relativistic degenerate and exchange-correlation effects. Chin. J. Phys. 68, 79–86 (2020)

    Article  Google Scholar 

  • Ema, S.A., Hossen, M.R., Mamun, A.A.: Nonplanar shocks and solitons in a strongly coupled adiabatic plasma: the roles of heavy ion dynamics and nonextensitivity. Contrib. Plasma Phys. 55(8), 596–605 (2015)

    Article  CAS  Google Scholar 

  • Graziani, F.R., Batista, V.S., Benedict, L.X., Castor, J.I., Chen, H., Chen, S.N., Fichtl, C.A., Glosli, J.N., Grabowski, P.E., Graf, A.T., Hau-Riege, S.P.: Large-scale molecular dynamics simulations of dense plasmas: The Cimarron Project. High Energy Density Phys. 8(1), 105–31 (2012)

    Article  CAS  Google Scholar 

  • Gurnett, D.A., Bhattacharjee, A.: Introduction to Plasma Physics: With Space and Laboratory Applications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  • Hossen, M.R., Ema, S.A., Mamun, A.A.: Nonplanar shock structures in a relativistic degenerate multi-species plasma. Commun. Theor. Phys. 62(6), 888 (2014)

    Article  Google Scholar 

  • Iqbal, M.: Linear wave theory in magnetized quantum plasmas. J. Plasma Phys. 79(1), 19–23 (2013)

    Article  Google Scholar 

  • Kushwaha, M.S., Ulloa, S.E.: Charge-density excitations in a quasi-one-dimensional electron gas with spin-orbit interactions: zero magnetic field. Phys. Rev. B 73(4), 045335 (2006)

    Article  Google Scholar 

  • Malik, H.K., Singh, S.: Conditions and growth rate of Rayleigh instability in a Hall thruster under the effect of ion temperature. Phys. Rev. E 83(3), 036406 (2011)

    Article  Google Scholar 

  • Malik, H.K., Singh, S.: Resistive instability in a Hall plasma discharge under ionization effect. Phys. Plasmas 20(5), 052115 (2013)

    Article  Google Scholar 

  • Marklund, M., Brodin, G.: Dynamics of spin-1 2 quantum plasmas. Phys. Rev. Lett. 98(2), 025001 (2007)

    Article  PubMed  Google Scholar 

  • MONDAL, DEBABRATA.: Basic Introduction to The Universe. DEBABRATA MONDAL (2021)

  • Mushtaq, A., Vladimirov, S.V.: Fast and slow magnetosonic waves in two-dimensional spin-1/2 quantum plasma. Phys. Plasmas 17, 102310 (2010)

    Article  Google Scholar 

  • Niknam, A.R., Sayyed Hasani, M.S., Rastbood, E., Abbasi Rostami, S., Khorashadizadeh, S.M.: Jeans gravitational instability in a collisional nonextensive dusty plasma with polarization force. Indian J. Phys. 97(5), 1605–1612 (2023)

    Article  CAS  Google Scholar 

  • Pachauri, S., Misra, K.P.: Instabilities in magnetized inhomogeneous dusty plasmas with the effect of recombination. Plasma Res. Express 4(2), 025004 (2022)

    Article  CAS  Google Scholar 

  • Ren, H., Wu, Z., Cao, J., Chu, P.K.: Jeans instability in quantum magnetoplasma with resistive effects. Phys. Plasmas 16(7), 072101 (2009)

    Article  Google Scholar 

  • Shapiro, V.D., Sagdeev, R.Z.: Cooperative phenomena and shock waves in collisionless plasmas. Phys. Rep. 283(1–4), 49–71 (1997)

    Article  Google Scholar 

  • Sharma, K., Deka, U.: Comprehensive review on various instabilities in semiconductor quantum plasma. Braz. J. Phys. 51(6), 1944–1955 (2021)

    Article  Google Scholar 

  • Sharma, P., Jain, S., Prajapati, R.P.: Effect of Fermi pressure and Bohm potential on jeans instability of quantum dusty plasma in presence of polarization force. IEEE Trans. Plasma Sci. 44(5), 862–869 (2016)

    Article  Google Scholar 

  • Shilpi, Sharry, Das, C., Chandra, S.: Study of quantum-electron acoustic solitary structures in Fermi plasma with two temperature electrons. In: Nonlinear Dynamics and Applications: Proceedings of the ICNDA 2022, pp. 63–83. Springer, Cham

  • Shukla, P.K., Eliasson, B.: Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83(3), 885 (2011)

    Article  CAS  Google Scholar 

  • Singh, S., Malik, H.K.: Growth of low-frequency electrostatic and electromagnetic instabilities in a Hall thruster. IEEE Trans. Plasma Sci. 39(10), 1910–1918 (2011)

    Article  Google Scholar 

  • Singh, S., Malik, H.K.: Effects of initial ion velocity, magnetic field and plasma density profiles in simulating the plasma plume in a Hall thruster. J. Astrophys. Astron. 44(1), 3 (2023)

    Article  Google Scholar 

  • Singh, S.S., Misra, K.P.: Two stream instabilities in unmagnetized nonrelativistic quantum plasma. Plasma Res. Express 4(2), 025006 (2022)

    Article  Google Scholar 

  • Vinko, S.M., et al.: Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482(7383), 59–62 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 119 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.S., Jyoti, Misra, K.P. et al. Spin force analysis using the Brillouin function for spin half particles in magnetised non-relativistic quantum plasma. Proc.Indian Natl. Sci. Acad. (2024). https://doi.org/10.1007/s43538-024-00296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43538-024-00296-9

Keywords

Navigation