Skip to main content
Log in

Tip-Enhanced Second Harmonic Generation: an Approach for Hyper-Raman Spectroscopy

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The near-field optical response generated at the apex of a scanning probe in tip-enhanced Raman spectroscopy (TERS) enhances and confines the interaction of light and matter to a few nanometers, thus breaking the diffraction limit of light while preserving the wealth of chemical and structural information. With the way paved to deploy Raman spectroscopy to surface nanostructures, we now investigate the most favorable experimental conditions and possible limitations for tip-enhanced hyper-Raman spectroscopy (TEHRS). In this two-photon-one phonon process, detected around the second harmonic of the excitation wavelength, selection rules different from those of the conventional Raman effect apply, thus holding promise for an almost comprehensive vibrational signature of the sample. TEHRS signal intensity critically depends on the second harmonic generation (SHG) efficiency. The aim of this work is to outline the experimental conditions that are best suited to obtain TEHRS signals in the challenging context of an extremely low scattering cross section. Using a silver tip and non-centrosymmetric PbTiO3 film on platinum substrate as a sample system in our simulations, we show a strong dependence of the intensity of SHG on the polarization of the incident light, the tip radius, the presence of a non-centrosymmetric sample, and the excitation power. We further discuss the effect of tip-sample distance for early-stage (proof of concept) TEHRS investigations and found 40% of total power dissipation for 1 nm distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen C, Hayazawa N, Kawata S (2014) A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat Commun 5:3312. https://doi.org/10.1038/ncomms4312

    Article  CAS  PubMed  Google Scholar 

  2. Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131–136. https://doi.org/10.1016/S0009-2614(99)01451-7

    Article  Google Scholar 

  3. Cançado LG, Hartschuh A, Novotny L (2009) Tip-enhanced Raman spectroscopy of carbon nanotubes. J Raman Spectrosc 40:1420–1426. https://doi.org/10.1002/jrs.2448

    Article  CAS  Google Scholar 

  4. Kumar N, Mignuzzi S, Su W, Roy D (2015) Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech Instrum 2:9. https://doi.org/10.1140/epjti/s40485-015-0019-5

    Article  Google Scholar 

  5. Dab C, Kolhatkar G, Plathier J, Thomas R, Ruediger A (2018) Dependence of apertureless scanning near-field spectroscopy on nanoscale refractive index changes. Plasmonics 13:99–106. https://doi.org/10.1007/s11468-016-0488-7

    Article  CAS  Google Scholar 

  6. Awada C, Plathier J, Dab C, Charra F, Douillard L, Ruediger A (2016) High resolution scanning near field mapping of enhancement on microscopy. Phys Chem Chem Phys 18:9405–9411. https://doi.org/10.1039/C5CP08015K

    Article  CAS  PubMed  Google Scholar 

  7. Frontiera RR, Gruenke NL, Van Duyne RP (2012) Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas. Nano Lett 12:5989–5994. https://doi.org/10.1021/nl303488m

    Article  CAS  PubMed  Google Scholar 

  8. Frontiera RR, Henry AI, Gruenke NL, Van Duyne RP (2011) Surface-enhanced femtosecond stimulated Raman spectroscopy. Phys Chem Lett 242:1199–1203. https://doi.org/10.1002/cphc.201600104

    Article  CAS  Google Scholar 

  9. Kneipp J, Kneipp H, Kneipp K (2006) Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering. Proc Natl Acad Sci U S A 103:17149–17153. https://doi.org/10.1073/pnas.0608262103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gruenke NL, Cardinal MF, McAnally MO et al (2016) Ultrafast and nonlinear surface-enhanced Raman spectroscopy. R Soc Chem 45:2263–2290. https://doi.org/10.1039/C5CS00763A

    Article  CAS  Google Scholar 

  11. Klingsporn JM, Sonntag MD, Seideman T, Van Duyne RP (2014) Tip-enhanced Raman spectroscopy with picosecond pulses. J Phys Chem Lett 5:106–110. https://doi.org/10.1021/jz4024404

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi O, Aoyama M, Oshima R, Okada Y, Oigawa H, Sano N, Shigekawa H, Morita R, Yamashita M (2004) Probing subpicosecond dynamics using pulsed laser combined scanning tunneling microscopy. Appl Phys Lett 85:3268–3270. https://doi.org/10.1063/1.1804238

    Article  CAS  Google Scholar 

  13. Berweger S, Atkin JM, Olmon RL, Raschke MB (2012) Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J Phys Chem Lett 3:945–952. https://doi.org/10.1021/jz2016268

    Article  CAS  PubMed  Google Scholar 

  14. Xu XG, Raschke MB (2013) Near-field infrared vibrational dynamics and tip-enhanced decoherence. Nano Lett 13:1588–1595. https://doi.org/10.1021/nl304804p

    Article  CAS  PubMed  Google Scholar 

  15. Berweger S, Atkin JM, Xu XG, Olmon RL, Raschke MB (2011) Femtosecond nanofocusing with full optical waveform control. Nano Lett 11:4309–4313. https://doi.org/10.1021/nl2023299

    Article  CAS  PubMed  Google Scholar 

  16. Denev SA, Lummen TTA, Barnes E et al (2011) Probing ferroelectrics using optical second harmonic generation. J Am Ceram Soc 94:2699–2727. https://doi.org/10.1111/j.1551-2916.2011.04740.x

    Article  CAS  Google Scholar 

  17. García de Abajo F, Howie A (1998) Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys Rev Lett 80:5180–5183. https://doi.org/10.1103/PhysRevLett.80.5180

    Article  Google Scholar 

  18. Davis M, Budimir M, Damjanovic D, Setter N (2007) Rotator and extender ferroelectrics: importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J Appl Phys 101:054112. https://doi.org/10.1063/1.2653925

    Article  CAS  Google Scholar 

  19. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  20. Singh S (1972) Nonlinear optical properties of ferroelectric lead titanate. Appl Phys Lett 20:135–137. https://doi.org/10.1063/1.1654078

    Article  CAS  Google Scholar 

  21. Rakic AD, Djurisic AB, Elazar JM et al (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  CAS  Google Scholar 

  22. Zhang M, Wang R, Zhu Z, Wang J, Tian Q (2013) Experimental research on the spectral response of tips for tip-enhanced Raman spectroscopy. J Opt 15:055006. https://doi.org/10.1088/2040-8978/15/5/055006

    Article  CAS  Google Scholar 

  23. Pozzi EA, Sonntag MD, Jiang N, Klingsporn JM, Hersam MC, van Duyne RP (2013) Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale. ACS Nano 7:885–888. https://doi.org/10.1021/nn400560t

    Article  CAS  PubMed  Google Scholar 

  24. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830. https://doi.org/10.1038/nature01937

    Article  CAS  PubMed  Google Scholar 

  25. Torres-Torres C, Reyes-Esqueda JA, Cheang-Wong JC, Crespo-Sosa A, Rodríguez-Fernández L, Oliver A (2008) Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica. J Appl Phys 104:014306. https://doi.org/10.1063/1.2952040

    Article  CAS  Google Scholar 

  26. Metzger B, Hentschel M, Nesterov M, Schumacher T, Lippitz M, Giessen H (2016) Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas. Appl Phys B Lasers Opt 122:77. https://doi.org/10.1007/s00340-016-6348-5

    Article  CAS  Google Scholar 

  27. Baida H, Billaud P, Marhaba S, Christofilos D, Cottancin E, Crut A, Lermé J, Maioli P, Pellarin M, Broyer M, del Fatti N, Vallée F, Sánchez-Iglesias A, Pastoriza-Santos I, Liz-Marzán LM (2009) Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag at SiO2 nanoparticles. Nano Lett 9:3463–3469. https://doi.org/10.1021/nl901672b

    Article  CAS  PubMed  Google Scholar 

  28. Muskens OL, Billaud P, Broyer M, del Fatti N, Vallée F (2008) Optical extinction spectrum of a single metal nanoparticle: quantitative characterization of a particle and of its local environment. Phys Rev B 78:1–9. https://doi.org/10.1103/PhysRevB.78.205410

    Article  CAS  Google Scholar 

  29. Burns G, Scott BA (1970) Raman studies of underdamped soft modes in PbTiO3. Phys Rev Lett 25:167–170. https://doi.org/10.1103/PhysRevLett.25.167

    Article  CAS  Google Scholar 

  30. Anderson A, Deryckx KS, Xu XG, Steinmeyer G̈, Raschke MB (2010) Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. Nano Lett 10:2519–2524. https://doi.org/10.1021/nl101090s

    Article  CAS  PubMed  Google Scholar 

  31. Shahbazyan V, Tigran V, Stockman MI (2013) Plasmonics: theory and applications. Challenges. https://doi.org/10.1007/978-94-007-7805-4

  32. Finazzi M, Biagioni P, Celebrano M, Duò L (2007) Selection rules for second-harmonic generation in nanoparticles. Phys Rev B 76:125414. https://doi.org/10.1103/PhysRevB.76.125414

    Article  CAS  Google Scholar 

  33. Hao F, Sonnefraud Y, Van Dorpe P et al (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988. https://doi.org/10.1021/nl802509r

    Article  CAS  PubMed  Google Scholar 

  34. Radziuk D, Moehwald H (2014) Highly effective hot spots for SERS signatures of live fibroblasts. Nanoscale 6:6115–6126. https://doi.org/10.1039/c4nr00594e

    Article  CAS  PubMed  Google Scholar 

  35. Xu XG, Rang M, Craig IM, Raschke MB (2012) Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. J Phys Chem Lett 3:1836–1841. https://doi.org/10.1021/jz300463d

    Article  CAS  PubMed  Google Scholar 

  36. Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J Phys Chem Lett 1:3427–3432. https://doi.org/10.1021/jz101289z

    Article  CAS  Google Scholar 

  37. Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1:84–90. https://doi.org/10.1007/s11671-006-9015-7

    Article  PubMed Central  Google Scholar 

  38. Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nanotoday 2:30–38. https://doi.org/10.1016/S1748-0132(07)70017-8

    Article  Google Scholar 

  39. Lee KS, M a E-S (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225. https://doi.org/10.1021/jp062536y

    Article  CAS  PubMed  Google Scholar 

  40. Lee J, Govorov AO, Dulka J, N a K (2004) Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett 4:2323–2330. https://doi.org/10.1021/nl048669h

    Article  CAS  Google Scholar 

  41. Berini P, De Leon I (2011) Surface plasmon–polariton amplifiers and lasers. Nat Photonics 6:16–24. https://doi.org/10.1038/nphoton.2011.285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.D. gratefully acknowledges the partial financial support through a Tunisia-INRS scholarship and technical support from CMC Microsystems for COMSOL Multiphysics. A.R. is grateful for the NSERC discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dab, C., Awada, C. & Ruediger, A. Tip-Enhanced Second Harmonic Generation: an Approach for Hyper-Raman Spectroscopy. Plasmonics 14, 653–661 (2019). https://doi.org/10.1007/s11468-018-0843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0843-y

Keywords

Navigation