Skip to main content
Log in

Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the polarization-resolved linear and third-order optical response of plasmonic nanostructure arrays that consist of orthogonally coupled gold nanoantennas. By rotating the incident light polarization direction, either one of the two eigenmodes of the coupled system or a superposition of the eigenmodes can be excited. We find that when an eigenmode is driven by the external light field, the generated third-harmonic signals exhibit the same polarization direction as the fundamental field. In contrast, when a superposition of the two eigenmodes is excited, third-harmonic can efficiently be radiated at the perpendicular polarization direction. Furthermore, the interference of the coherent third-harmonic signals radiated from both nanorods proves that the phase between the two plasmonic oscillators changes in the third-harmonic signal over \(3\pi\) when the laser is spectrally tuned over the resonance, rather than over \(\pi\) as in the case of the fundamental field. Finally, almost all details of the linear and the nonlinear spectra can be described by an anharmonic coupled oscillator model, which we discuss in detail and which provides deep insight into the linear and the nonlinear optical response of coupled plasmonic nanoantennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010)

    Article  ADS  Google Scholar 

  2. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  3. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  4. N. Liu, H. Giessen, Coupling Effects in Optical Metamaterials. Angew. Chem. Int. Ed. 49, 9838–9852 (2010)

    Article  Google Scholar 

  5. X. Yin, M. Schäferling, B. Metzger, H. Giessen, Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model. Nano Lett. 13, 6238–6243 (2013)

    Article  ADS  Google Scholar 

  6. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2007)

    Google Scholar 

  7. P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005)

    Article  ADS  Google Scholar 

  8. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photon 6, 737–748 (2012)

    Article  ADS  Google Scholar 

  9. J.Y. Suh, T.W. Odom, Nonlinear properties of nanoscale antennas. Nano Today 8, 469–479 (2013)

    Article  Google Scholar 

  10. S.B. Hasan, F. Lederer, C. Rockstuhl, Nonlinear plasmonic antennas. Mater. Today 17, 478–485 (2014)

    Article  Google Scholar 

  11. T. Hanke, J. Cesar, V. Knittel, A. Trugler, U. Hohenester, A. Leitenstorfer, R. Bratschitsch, Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12, 992–996 (2012)

    Article  ADS  Google Scholar 

  12. M. Hentschel, T. Utikal, H. Giessen, M. Lippitz, Quantitative modelling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett. 12, 3778 (2012)

    Article  ADS  Google Scholar 

  13. H. Harutyunyan, G. Volpe, R. Quidant, L. Novotny, Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 217403 (2012)

    Article  ADS  Google Scholar 

  14. B. Metzger, T. Schumacher, M. Hentschel, M. Lippitz, H. Giessen, Third harmonic mechanism in complex plasmonic fano structures. ACS Photonics 1, 471–476 (2014)

    Article  Google Scholar 

  15. B.K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007)

    Article  ADS  Google Scholar 

  16. H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, M. Kauranen, Metamaterials with tailored nonlinear optical response. Nano Lett. 12, 673–677 (2012)

    Article  ADS  Google Scholar 

  17. R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, M. Kauranen, Dipole limit in second-harmonic generation from arrays of gold nanoparticles. Opt. Express 19, 26866–26871 (2011)

    Article  ADS  Google Scholar 

  18. R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, M. Kuittinen, Enhancement of second-harmonic generation from metal nanoparticles by passive elements. Phys. Rev. Lett. 110, 1–5 (2013)

    Article  Google Scholar 

  19. M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006)

    Article  ADS  Google Scholar 

  20. F.B.P. Niesler, N. Feth, S. Linden, M. Wegener, Second-harmonic optical spectroscopy on split-ring-resonator arrays. Opt. Lett. 36, 1533–1535 (2011)

    Article  ADS  Google Scholar 

  21. S. Linden, F.B.P. Niesler, J. Förstner, Y. Grynko, T. Meier, M. Wegener, Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 109, 1 (2012)

    Google Scholar 

  22. K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang, Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 14, 379–383 (2015)

    Article  ADS  Google Scholar 

  23. K. Thyagarajan, J. Butet, O.J.F. Martin, Augmenting second harmonic generation using fano resonances in plasmonic systems. Nano Lett. 2013, 1847–1851 (2013)

    Article  ADS  Google Scholar 

  24. Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, N.J. Halas, Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc. Natl. Acad. Sci. USA 110, 9215–9219 (2013)

    Article  ADS  Google Scholar 

  25. T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, H. Giessen, Towards the origin of the nonlinear response in hybrid plasmonic systems. Phys. Rev. Lett. 106, 133901 (2011)

    Article  ADS  Google Scholar 

  26. H. Aouani, M. Rahmani, M. Navarro-Cía, S.A. Maier, Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol. 9, 290–294 (2014)

    Article  ADS  Google Scholar 

  27. B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C.B. Murray, B. Knabe, K. Buse, H. Giessen, Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 14, 2867–2872 (2014)

    Article  ADS  Google Scholar 

  28. A.M. Funston, C. Novo, T.J. Davis, P. Mulvaney, Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9, 1651–1658 (2009)

    Article  ADS  Google Scholar 

  29. L.-J. Black, Y. Wang, C.H. de Groot, A. Arbouet, O.L. Muskens, Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces. ACS Nano 8, 6390–6399 (2014)

    Article  Google Scholar 

  30. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)

    Article  ADS  Google Scholar 

  31. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  32. I.N. Bronstein, K.A. Semendjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Verlag Harri Deutsch, 2005)

  33. S.A. Maier, in Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007), Chap. 5, Localized Surface Plasmons, formula 5.13b

  34. R.R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 1966)

    MATH  Google Scholar 

  35. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Elsevier, 2008)

    Google Scholar 

  36. M.W. Klein, T. Tritschler, M. Wegener, S. Linden, Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs. Phys. Rev. B 72, 115113 (2005)

    Article  ADS  Google Scholar 

  37. B. Metzger, M. Hentschel, M. Lippitz, H. Giessen, Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt. Lett. 37, 4741–4743 (2012)

    Article  ADS  Google Scholar 

  38. K. Thyagarajan, S. Rivier, A. Lovera, O.J. Martin, Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt. Express 20, 12860–12865 (2012)

    Article  ADS  Google Scholar 

  39. B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, H. Giessen, Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength. Nano Lett. 15, 3917–3922 (2015)

    Article  ADS  Google Scholar 

  40. M. Celebrano et al., Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015)

    Article  ADS  Google Scholar 

  41. R.P. Feynman, R.B. Leighton, M. Sands, in The Feynman Lectures on Physics, vol. 1 (Addison-Wesley, Boston, 1977), Chap. 30, Diffraction, formula 30.19

  42. B. Metzger, A. Steinmann, F. Hoos, S. Pricking, H. Giessen, Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses. Opt. Lett. 35, 3961–3963 (2010)

    Article  ADS  Google Scholar 

  43. B. Metzger, A. Steinmann, H. Giessen, High-power widely tunable sub-20fs Gaussian laser pulses for ultrafast nonlinear spectroscopy. Opt. Express 19, 24354–24360 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the DFG (SPP1391, ultrafast nanooptics), from the Baden-Württemberg Stiftung (Kompetenznetz Funktionelle Nanostrukturen), from the BMBF (13N10146), from the ERC (Complexplas), and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Metzger.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metzger, B., Hentschel, M., Nesterov, M. et al. Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas. Appl. Phys. B 122, 77 (2016). https://doi.org/10.1007/s00340-016-6348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6348-5

Keywords

Navigation