Skip to main content
Log in

Optical Transmission in Arrayed Asymmetric Multilayered Ultra-Thin Metal Stripes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An arrayed structure of asymmetric multilayered ultra-thin metal stripes is proposed to achieve a narrow transmission peak in an ultra-broad transmission valley, which is formed due to the destructive multiple-interference tunneling existed in an ultra-thin metal and dielectric multilayers. The transmission peak is influenced by two resonant modes. One is the coupled gap surface plasmon (cg-SP) resonance mode confined in entire multilayered ridges, the other is the modified gap surface plasmon (g-SP) mode within metal-dielectric layers. Furthermore, the transmission mode and the stopband are tunable in a wide range through designing the dimension parameters. The proposed plasmonic structure is promising for wideband filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang S, Genov D A, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401

    Article  CAS  Google Scholar 

  2. Papasimakis N, Fu Y H, Fedotov V A, Prosvirnin S L, Tsai D P, Zheludev N I (2009) Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl Phys Lett 94(21):211902

    Article  CAS  Google Scholar 

  3. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103–1107

    Article  CAS  PubMed  Google Scholar 

  4. Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel A P, Ustinov A V, Anlage S M, Soukoulis C M (2011) Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett 107(4):043901

    Article  CAS  PubMed  Google Scholar 

  5. Lu H, Liu X, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85(5):053803

    Article  CAS  Google Scholar 

  6. Lu H, Gan X, Mao D, Zhao J (2017) Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photon Res 5(3):162–167

    Article  CAS  Google Scholar 

  7. Uddin M J, Magnusson R (2013) Highly efficient color filter array using resonant Si3N4 gratings. Opt Express 21(10):12495–12506

    Article  CAS  PubMed  Google Scholar 

  8. Foley J M, Young S M, Phillips J D (2013) Narrowband mid-infrared transmission filtering of a single layer dielectric grating. Appl Phys Lett 103(7):071107

    Article  CAS  Google Scholar 

  9. Zeuner F, Muldarisnur M, Hildebrandt A, Förstner J, Zentgraf T (2015) Coupling mediated coherent control of localized surface plasmon polaritons. Nano Lett 15(6):4189–4193

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Liu G, Fu G, Liu X, Wang Y (2016) Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial. Opt Express 24(5):5020–5025

    Article  CAS  PubMed  Google Scholar 

  11. Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927

    Article  CAS  PubMed  Google Scholar 

  12. Spevak I S, Nikitin A Y, Bezuglyi E V, Levchenko A, Kats A V (2009) Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films. Phys Rev B 79(16):161406

    Article  CAS  Google Scholar 

  13. Braun J, Gompf B, Kobiela G, Dressel M (2009) How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 103(20):203901

    Article  CAS  PubMed  Google Scholar 

  14. Sun Z, Zuo X, Lin Q (2010) Plasmon-induced nearly null transmission of light through gratings in very thin metal films. Plasmonics 5(1):13–19

    Article  CAS  Google Scholar 

  15. Xiao S, Zhang J, Peng L, Jeppesen C, Malureanu R, Kristensen A, Mortensen N A (2010) Nearly zero transmission through periodically modulated ultrathin metal films. Appl Phys Lett 97(7):071116

    Article  CAS  Google Scholar 

  16. Xiao S, Mortensen N A (2011) Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays. Opt Lett 36(1):37–39

    Article  CAS  PubMed  Google Scholar 

  17. Sun Z, Zuo X, Li J (2011) Optical transmission through multilayered ultra-thin metal gratings. Plasmonics 6(4):745

    Article  CAS  Google Scholar 

  18. Xiang D, Wang L L, Zhai X, Wang L, Pan A L (2011) Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits. Opt Commun 284(1):471–475

    Article  CAS  Google Scholar 

  19. Zhou L, Huang CP, Wu S, Yin XG, Wang YM, Wang QJ, Zhu YY (2010) Enhanced optical transmission through metal-dielectric multilayer gratings. Appl Phys Lett 97(1):011905

    Article  CAS  Google Scholar 

  20. Guo L, Sun Z (2016) Plasmon-induced transparency in binary arrays of ultrathin metal stripes for narrow-band transmission. Opt Lett 41(3):591–594

    Article  CAS  PubMed  Google Scholar 

  21. Zhang S, Bao K, Halas N J, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663

    Article  CAS  PubMed  Google Scholar 

  22. Park J H, Kodigala A, Ndao A, Kanté B (2017) Hybridized metamaterial platform for nano-scale sensing. Opt Express 25(13):15590–15598

    Article  CAS  PubMed  Google Scholar 

  23. Wu D, Liu Y, Yu L, Yu Z, Chen L, Li R, Ma R, Liu C, Zhang J, Ye H (2017) Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci Rep 7:srep45210

    Article  CAS  Google Scholar 

  24. Zhao W, Leng X, Jiang Y (2015) Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning. Opt Express 23(5):6858–6866

    Article  CAS  PubMed  Google Scholar 

  25. Niraula M, Yoon J W, Magnusson R (2014) Mode-coupling mechanisms of resonant transmission filters. Opt Express 22(21):25817–25829

    Article  PubMed  Google Scholar 

  26. Shyiq Amin M, Woong Yoon J, Magnusson R (2013) Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly. Appl Phys Lett 103(13):131106

    Article  CAS  Google Scholar 

  27. Zhao W, Jiang Y (2015) Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects. Optics Lett 40(1):93–96

    Article  CAS  Google Scholar 

  28. Guo L, Sun Z (2015) Cooperative optical trapping in asymmetric plasmon nanocavity arrays. Opt Express 23(24):31324–31333

    Article  PubMed  Google Scholar 

  29. Sun Z, Zuo X (2011) Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings. Plasmonics 6(1):83–89

    Article  CAS  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China (Grant No. 61671008); Natural Science Foundation of Guangxi Province (Grant No. 2015GXNSFDA139003); Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Grant Nos. YQ14115, YQ17103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Ma, J., Chen, S. et al. Optical Transmission in Arrayed Asymmetric Multilayered Ultra-Thin Metal Stripes. Plasmonics 13, 1941–1946 (2018). https://doi.org/10.1007/s11468-018-0709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0709-3

Keywords

Navigation