Skip to main content
Log in

High Optical Transmission in a Hybrid Plasmonic-Optical Structure with a Continuous Metal Film

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Metals are naturally opaque for electromagnetic (EM) waves below violet frequency due to the Coulomb screening effect. In this letter, we demonstrate high optical transparency of a seamless continuous metal film by sandwiching it in a hybrid plasmonic-optical structure. The proposed structure consists of a plasmonic array and an optical cavity, which exhibits magnetic plasmon (MP) resonance and optical Fabry-Perot (FP) resonance, respectively. An optical transparency of 84% in the near-IR regime is achieved making use of interaction between the plasmonic and optical modes. Furthermore, spectral tunability of the high transparency is demonstrated and robustness under oblique incidence is examined. This work may give insights into plasmonic-optical interactions and may be a potential candidate for transparent electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kang MG, Kim MS, Kim J, Guo LJ (2008) Organic solar cells using nanoimprinted transparent metal electrodes. Adv Mater 20(23):4408–4413

    Article  Google Scholar 

  2. Minami T (2008) Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes. Thin Solid Films 516(17):5822–5828

    Article  CAS  Google Scholar 

  3. Elbahri M, Hedayati MK, Chakravadhanula K, Sai V, Jamali M, Strunkus T, Zaporojtchenko V, Faupel F (2011) An omnidirectional transparent conducting-metal-based plasmonic nanocomposite. Adv Mater 23(17):1993–1997

    Article  CAS  PubMed  Google Scholar 

  4. Martín-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86(6):1114–1117

    Article  CAS  PubMed  Google Scholar 

  5. Chan H, Marcet Z, Woo K, Tanner D, Carr D, Bower J, Cirelli R, Ferry E, Klemens F, Miner J (2006) Optical transmission through double-layer metallic subwavelength slit arrays. Opt Lett 31(4):516–518

    Article  CAS  PubMed  Google Scholar 

  6. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96(23):233901

    Article  CAS  PubMed  Google Scholar 

  7. Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 452(7188):728–731

    Article  CAS  PubMed  Google Scholar 

  8. Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77(7):075401

    Article  CAS  Google Scholar 

  9. Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82(1):729–787

    Article  Google Scholar 

  10. Janipour M, Sendur K (2016) Optical transmission enhancement of stacked plasmonic apertures. J Lightwave Technol 34(3):961–968

    Article  CAS  Google Scholar 

  11. Sangiao S, Freire F, Fd L-P, Rodrigo SG, Teresa JMD (2016) Plasmonic control of extraordinary optical transmission in the infrared regime. Nanotechnology 27(50):505202

    Article  CAS  PubMed  Google Scholar 

  12. Guo H, Lin N, Chen Y, Wang Z, Xie Q, Zheng T, Gao N, Li S, Kang J, Cai D, Peng D-L (2013) Copper nanowires as fully transparent conductive electrodes. Sci Rep 3:2323

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wu H, Kong D, Ruan Z, Hsu P-C, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y (2013) A transparent electrode based on a metal nanotrough network. Nat Nanotechnol 8(6):421–425

    Article  CAS  PubMed  Google Scholar 

  14. Gao T, Wang B, Ding B, Lee J-k, Leu PW (2014) Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes. Nano Lett 14(4):2105–2110

    Article  CAS  PubMed  Google Scholar 

  15. Nam S, Song M, Kim D-H, Cho B, Lee HM, Kwon J-D, Park S-G, Nam K-S, Jeong Y, Kwon S-H, Park YC, Jin S-H, Kang J-W, Jo S, Kim CS (2014) Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode. Sci Rep 4:4788

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Liu G, Huang S, Liu X, Huang H, Wang Y, Pan P, Gu G (2015) A simple strategy for tuning the opaque metal film to BE optical transparency by the dielectric cavity. Mater Lett 160:518–521

    Article  CAS  Google Scholar 

  17. Hao J, Qiu C-W, Qiu M, Zouhdi S (2012) Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures. Opt Lett 37(23):4955–4957

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Liu G, Huang K, Hu Y, Zhang X, Cai Z (2013) Enhanced transmission of a plasmonic ellipsoid array via combining with double continuous metal films. Opt Commun 311:100–106

    Article  CAS  Google Scholar 

  19. Liu Z, Liu G-P, Huang K, Chen Y, Hu Y, Zhang X, Cai Z (2013) Enhanced optical transmission of a continuous metal film with double metal cylinder arrays. IEEE Photon Technol Lett 25(12):1157–1160

    Article  Google Scholar 

  20. Zhao D, Gong H, Yang Y, Li Q, Qiu M (2013) Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures. Appl Phys Lett 102(20):201109

    Article  CAS  Google Scholar 

  21. Hu Y, G-q L, Z-q L, Y-h C, X-n Z, Z-j C, X-s L (2014) Robust double-spectral transparency of double mutually staggered plasmonic arrays sandwiched by two continuous metal films. Opt Commun 321:219–225

    Article  CAS  Google Scholar 

  22. Liu G-q HY, Z-q L, Y-h C, Z-j C, X-n Z, Huang K (2014) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16(9):4320–4328

    Article  CAS  PubMed  Google Scholar 

  23. Wang W, Zhao D, Chen Y, Gong H, Chen X, Dai S, Yang Y, Li Q, Qiu M (2014) Grating-assisted enhanced optical transmission through a seamless gold film. Opt Express 22(5):5416–5421

    Article  PubMed  Google Scholar 

  24. Liu Z, Liu G, Liu M, Huang S, Liu X, Wang Y, Pan P (2015) Making a conducting metal with optical transparency via coupled plasmonic-photonic nanostructures. Plasmonics 10(5):1195–1200

    Article  CAS  Google Scholar 

  25. Wang Z, Hou Y, Li W, Li X, Cai A (2016) Tunnel light through a continuous optically thick metal film utilizing higher order magnetic plasmon resonance. Plasmonics 11(6):1445–1450. doi:10.1007/s11468-016-0195-4

    Article  CAS  Google Scholar 

  26. Zhang L, Hao J, Ye H, Yeo SP, Qiu M, Zouhdi S, Qiu CW (2013) Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. Nano 5(8):3373–3379

    CAS  Google Scholar 

  27. Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  28. Chettiar UK, Kildishev AV, Klar TA, Shalaev VM (2006) Negative index metamaterial combining magnetic resonators with metal films. Opt Express 14(17):7872–7877

    Article  PubMed  Google Scholar 

  29. Ekinci Y, Christ A, Agio M, Martin O, Solak H, Löffler J (2008) Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Opt Express 16(17):13287–13295

    Article  CAS  PubMed  Google Scholar 

  30. Hou Y (2013) Coherence of magnetic resonators in a metamaterial. AIP Adv 3(12):122119

    Article  CAS  Google Scholar 

  31. Tang CJ, Zhan P, Cao ZS, Pan J, Chen Z, Wang ZL (2011) Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials. Phys Rev B 83(4):041402

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61575006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumin Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hou, Y. High Optical Transmission in a Hybrid Plasmonic-Optical Structure with a Continuous Metal Film. Plasmonics 13, 1159–1163 (2018). https://doi.org/10.1007/s11468-017-0616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0616-z

Keywords

Navigation