Skip to main content
Log in

Computational Study of Plasmon Interaction in Organic Media: a Comparison Between Analytical and Numerical Model for Dimer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the present work, an investigation of wavelength-dependent absorption spectrum of spherical nanoparticles with different arrangements in organic medium using discrete dipole approximation (DDA) has been performed. Specifically, we study the impact of different arrangements such as monomer, dimer (compositionally symmetric and asymmetric), 1D array of spherical nanoparticle on surface plasmon resonance (SPR) peak position, and its spectral broadening in distinct regimes of the electromagnetic spectrum. Three different organic materials such as P3HT:PCBM blend (Poly(3-hexyl thiophene))-(phenyl-C61-buryricacid methyl ester), P3HT(poly (3-hexyl thiophene)), and PEOPT ((4’-(1”, 4”, 7”-trioaoctyl) phenyl) theophany) have been chosen in the present work to study the absorption and scattering spectrum of MNP. Further, near-field pattern of homo-dimer nanogeometry is also shown in the present study. We also observed that on increasing the interacting number of particles in 1D array, the corresponding FWHM (full width at half maxima) value increases as well, which covers the large spectral region of the electromagnetic spectrum. The comparison between dipole model and numerical model has been performed to analyze the extinction behavior of smaller size (d << λ) metal nano dimer which shows a good agreement in 400–600nm wavelength range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://docs.enthought.com/mayavi/mayavi/

References

  1. Green M (2004) Recent developments in photovoltaics. Solar energy 76(1):3

    Article  CAS  Google Scholar 

  2. Catchpole K, Polman A (2008) Plasmonic solar cells. Optics express 16(26):21793

    Article  CAS  Google Scholar 

  3. Hoppea H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1925

    Google Scholar 

  4. Green MA Third generation photovoltaics. (Springer, 2006)

  5. Catchpole KR, McCann MJ, Weber KJ, Blakers AW (2001) A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates. Sol Energy Mater Sol Cells 68(2):173

    Article  CAS  Google Scholar 

  6. Shrotriya V, Li G, Yao Y, Chu CW, Yang Y (2006) Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl Phys Lett 88(7):073508

    Article  Google Scholar 

  7. Koynov S, Brandt MS, Stutzmann M (2006) Black nonreflecting silicon surfaces for solar cells. Appl Phys Lett 88(20):203107

    Article  Google Scholar 

  8. Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288

    Article  CAS  Google Scholar 

  9. Konishi K, Sugimoto T, Bai B, Svirko Y, Kuwata-Gonokami M (2007) Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings. Opt Express 15(15):9575

    Article  CAS  Google Scholar 

  10. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222

    Article  CAS  Google Scholar 

  11. Angermann H (2008) Passivation of structured p-type silicon interfaces: effect of surface morphology and wet-chemical pre-treatment. Appl Surf Sci 254(24):8067

    Article  CAS  Google Scholar 

  12. Green MA, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photonics 6(3):130

    Article  CAS  Google Scholar 

  13. Li X, Choy WC, Huo L, Xie F, Sha WE, Ding B, Guo X, Li Y, Hou J, You J et al (2012) Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater 24(22):3046

    Article  CAS  Google Scholar 

  14. Na SI, Oh SH, Kim SS, Kim DY (2009) Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer. Org Electron 10(3):496

    Article  CAS  Google Scholar 

  15. Chandrasekhar N, Basak S, Mohiddon MA, Chandrasekar R (2014) Planar active organic waveguide and wavelength filter: self-assembled meso-tetratolylporphyrin hexagonal nanosheet. ACS Appl Mater Interfaces 6 (3):1488

    Article  CAS  Google Scholar 

  16. Sahu P (2016) Theoretical investigation of all optical switch based on compact surface plasmonic two mode interference coupler. J Light Technol 34(4):1300

    Article  CAS  Google Scholar 

  17. Lindquist NC, Luhman WA, Oh SH, Holmes RJ (2008) Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl Phys Lett 93(12):123308

    Article  Google Scholar 

  18. Dang MT, Hirsch L, Wantz G (2011) P3HT: PCBM, best seller in polymer photovoltaic research. Adv Mater 23(31):3597

    Article  CAS  Google Scholar 

  19. Kerp H, Donker H, Koehorst R, Schaafsma T, Van Faassen E (1998) Exciton transport in organic dye layers for photovoltaic applications. Chem Phys Lett 298(4):302

    Article  CAS  Google Scholar 

  20. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93(7):3693

    Article  CAS  Google Scholar 

  21. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltiac cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789

    Article  CAS  Google Scholar 

  22. Duche D, Torchio P, Escoubas L, Monestier F, Simon JJ, Flory F, Mathian G (2009) Improving light absorption in organic solar cells by plasmonic contribution. Sol Energy Mater Sol Cells 93(8):1377

    Article  CAS  Google Scholar 

  23. Xue M, Li L, Tremolet de Villers BJ, Shen H, Zhu J, Yu Z, Stieg AZ, Pei Q, Schwartz BJ, Wang KL (2011) Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles. Appl Phys Lett 98(25):119

    Article  Google Scholar 

  24. Westphalen M, Kreibig U, Rostalski J, Lüth H, Meissner D (2000) Metal cluster enhanced organic solar cells. Sol Energy Mater Sol Cells 61(1):97

    Article  CAS  Google Scholar 

  25. Zhu SQ, Zhang T, Guo XL, Shan F, Zhang XY (2014) Light absorption enhancement in organic solar cell by embedding Ag nanoparticles and nanochains within the active layer. J Nanomater 2014:45

    Google Scholar 

  26. Kang MG, Xu T, Park HJ, Luo X, Guo LJ (2010) Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv Mater 22(39):4378

    Article  CAS  Google Scholar 

  27. Kim SS, Na SI, Jo J, Kim DY, Nah YC (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93(7):305

    Google Scholar 

  28. Sharma R, Roopak S, kumar Pathak N, Sharma R et al (2016) Plasmonics pp 1–10

  29. Sharma R, Roopak S, kumar Pathak N, Uma R, Sharma R (2017) Plasmonics, pp 1–9

  30. Shen H, Bienstman P, Maes B (2009) Plasmonic absorption enhancement in organic solar cells with thin active layers. J Appl Phys 106(7):073109

    Article  Google Scholar 

  31. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1(1):5

    Article  CAS  Google Scholar 

  32. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797

    Article  CAS  Google Scholar 

  33. Ando M, Kawasaki M, Imazeki S, Sasaki H, Kamata T (2004) Self-aligned self-assembly process for fabricating organic thin-film transistors. Appl Phys Lett 85(10):1849

    Article  CAS  Google Scholar 

  34. Maity S, Bhunia C, Sahu P (2016) Improvement in optical and structural properties of ZnO thin film through hexagonal nano- pillar formation to improve the efficiency of a Si–ZnO heterojunction solar cell. J Phys D Appl Phys 49(20):205104

    Article  Google Scholar 

  35. Maity S, Bhunia CT, Sahu P (2014) Improvement of some effective parameters of C-SI solar cell for better efficiency. Acta Technica Napocensis 55(3):4

    Google Scholar 

  36. Pathak NK, Ji A, Sharma R (2014) Study of efficiency enhancement in layered geometry of excitonic-plasmonic solar cell. Appl Phys A 115(4):1445

    Article  CAS  Google Scholar 

  37. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  38. Draine BT, Flatau PJ (2012) ArXiv e-prints

  39. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11(4):1491

    Article  Google Scholar 

  40. Barth J, Johnson R, Cardona M, Palik E (1991) Handbook of optical constants of solids II. Academic Press, New York

    Google Scholar 

  41. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  42. Van Dijk M, Tchebotareva A, Orrit M, Lippitz M, Berciaud S, Lasne D, Cognet L, Lounis B (2006) Absorption and scattering microscopy of single metal nanoparticles. Phys Chem Chem Phys 8(30):3486

    Article  Google Scholar 

  43. Lee JY, Peumans P (2010) The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt Express 18(10):10078

    Article  CAS  Google Scholar 

  44. Chang YC, Wang SM, Chung HC, Tseng CB, Chang SH (2012) Observation of absorption-dominated bonding dark plasmon mode from metal–insulator–metal nanodisk arrays fabricated by nanospherical-lens lithography. Acs Nano 6(4):3390

    Article  CAS  Google Scholar 

  45. Roopak S, kumar Pathak N, Sharma R, Ji A, Pathak H, Sharma R (2016) Numerical simulation of extinction spectra of plasmonically coupled nanospheres using discrete dipole approximation: influence of compositional asymmetry. Plasmonics 11 (6): 1603

    Article  CAS  Google Scholar 

  46. Gérard D, Gray SK (2014) Aluminium plasmonics. J Phys D Appl Phys 48(18):184001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Pathak, N.K. & Sharma, R.P. Computational Study of Plasmon Interaction in Organic Media: a Comparison Between Analytical and Numerical Model for Dimer. Plasmonics 13, 1775–1784 (2018). https://doi.org/10.1007/s11468-018-0691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0691-9

Keywords

Navigation