Skip to main content
Log in

Numerical Simulation of Extinction Spectra of Plasmonically Coupled Nanospheres Using Discrete Dipole Approximation: Influence of Compositional Asymmetry

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate plasmon coupling phenomenon between equivalent (homodimer) and non-equivalent (heterodimer) spherical shape noble metal nanoparticle (Ag, Au and Al). A systematic comparison of surface plasmon resonance (SPR) and extinction properties of various configurations (monomer, homodimer and heterodimer) has been investigated to observe the effect of compositional asymmetry. Numerical simulation has been done by using discrete dipole approximation method to study the optical properties of plasmonically coupled metal nanoparticles (MNPs). Plasmon coupling between similar nanoparticles allows only higher wavelength bonding plasmon mode while both the plasmon modes lower wavelength antibonding mode as well as higher wavelength bonding mode in the case of heterodimer. Au monomer of radius 50 nm shows resonance peak at 518 nm while plasmon coupling between Au-Au homodimer results in a spectral red shift around 609 nm. Au-Ag plasmonic heterodimer (radius 50 nm) reveals two resonant modes corresponding to higher energy antibonding mode (422 nm) as well as lower energy bonding mode (533 nm). Further, we have shown that interparticle edge-to-edge separation is the most significant parameter affecting the surface plasmon resonances of MNPs. As the inter particle separation decreases, resonance wavelength shows red spectral shift which is maximum for the touching condition. It is shown that plasmon coupling is a reliable strategy to tune the SPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kreibig U, Völlmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  2. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  3. Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44:283001

    Article  Google Scholar 

  4. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  5. Alok J, Sangita, Sharma RP (2012) A study of nanoellipsoids for thin-film plasmonic solar cell applications. J Phys D Appl Phys 45:275101

    Article  Google Scholar 

  6. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  7. Verma S, Rao BT, Detty AP, Ganesan V, Phase DM, Rai SK, Bose A, Joshi SC, Kukreja LM (2015) Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures. J Appl Phys 117:133105

    Article  Google Scholar 

  8. Pathak NK, Alok J, Sharma RP (2014) Tunable properties of surface plasmon resonances: the influence of core–shell thickness and dielectric environment. Plasmonics 9:651–657

    Article  CAS  Google Scholar 

  9. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294

    Article  CAS  Google Scholar 

  10. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2013) Aluminum for plasmonics. ACS Nano 8:834–840

    Article  Google Scholar 

  11. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  12. Wang Y, Plummer EW, Kempa K (2011) Foundations of plasmonics. Adv Phys 60:799–898

    Article  CAS  Google Scholar 

  13. Park W (2014) Optical interactions in plasmonic nanostructures. Nano Convergence 1:1–27

    Article  Google Scholar 

  14. Pileni MP (2001) Nanocrystal self-assemblies: fabrication and collective properties. J Phys Chem B 105:3358–3371

    Article  CAS  Google Scholar 

  15. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164

    Article  CAS  Google Scholar 

  16. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650

    Article  CAS  Google Scholar 

  17. Jain PK, Qian W, El-Sayed MA (2006) Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. J Phys Chem B 110:136–142

    Article  CAS  Google Scholar 

  18. Jiang J, Bosnick K, Maillard M, Brus L (2003) Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107:9964–9972

    Article  CAS  Google Scholar 

  19. Michaels AM, Jiang J, Brus L (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J Phys Chem B 104:11965–11971

    Article  CAS  Google Scholar 

  20. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  Google Scholar 

  21. Ritchie G, Burstein E (1981) Luminescence of dye molecules adsorbed at a Ag surface. Phys Rev B 24:4843

    Article  CAS  Google Scholar 

  22. Maillard M, Monchicourt P, Pileni MP (2003) Multiphoton photoemission of self-assembled silver nanocrystals. Chem Phys Lett 380:704–709

    Article  CAS  Google Scholar 

  23. Ando M, Kawasaki M, Imazeki S, Sasaki H, Kamata T (2004) Self-aligned self-assembly process for fabricating organic thin-film transistors. Appl Phys Lett 85:1849–1851

    Article  CAS  Google Scholar 

  24. Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA (2006) Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl Phys Lett 88:161102

    Article  Google Scholar 

  25. Liu F, Jin J (2015) Double Fano resonances in plasmon coupling nanorods. J Opt 17:055004

    Article  Google Scholar 

  26. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903

    Article  CAS  Google Scholar 

  27. Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357

    Article  CAS  Google Scholar 

  28. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou S, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 109:1079–1087

    Article  CAS  Google Scholar 

  29. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  CAS  Google Scholar 

  30. Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3:1304–1315

    Article  CAS  Google Scholar 

  31. Chen F, Alemu N, Johnston RL (2011) Collective plasmon modes in a compositionally asymmetric nanoparticle dimer. AIP Adv 1:032134

    Article  Google Scholar 

  32. Encina ER, Coronado EA (2010) On the far field optical properties of Ag–Au nanosphere pairs. J Phys Chem C 114:16278–16284

    Article  CAS  Google Scholar 

  33. Sheikholeslami S, Jun YW, Jain PK, Alivisatos AP (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:2655–2660

    Article  CAS  Google Scholar 

  34. Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Del Fatti N, Vallée F, Brevet PF (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101:197401

    Article  CAS  Google Scholar 

  35. Peña-Rodríguez O, Pal U, Campoy-Quiles M, Rodríguez-Fernández L, Garriga M, Alonso MI (2011) Enhanced Fano resonance in asymmetrical Au: Ag heterodimers. J Phys Chem C 115:6410–6414

    Article  Google Scholar 

  36. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  37. Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343–7350

    Article  CAS  Google Scholar 

  38. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  39. Vial A, Grimault AS, Macías D, Barchiesi D, de La Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416

    Article  Google Scholar 

  40. Luo LB, Xie WJ, Zou YF, Yu YQ, Liang FX, Huang ZJ, Zhou KY (2015) Surface plasmon propelled high-performance CdSe nanoribbons photodetector. Opt Express 23:12979–12988

    Article  Google Scholar 

  41. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. JOSA A 11:1491–1499

    Article  Google Scholar 

  42. Draine BT, Flatau PJ User guide to the discrete dipole approximation code DDSCAT 7.3, available at http://arxiv.org/abs/1202.3424

  43. Roopak S, Pathak NK, Ji A, Sharma RP (2015) Numerical simulation of broadband scattering by coated and noncoated metal nanostructures using discrete dipole approximation method. Plasmonics. doi:10.1007/s11468-015-0052-x

    Google Scholar 

  44. Pathak H, Alok J, Sharma R, Sharma RP (2015) Optical properties of metal subwavelength structures for realistic geometries in a dielectric matrix using DDA: an error analysis. Plasmonics 10:783–789

    Article  CAS  Google Scholar 

  45. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110:18243–18253

    Article  CAS  Google Scholar 

  46. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  47. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  48. Draine BT, Flatau PJ (2008) Discrete-dipole approximation for periodic targets: theory and tests. JOSA A 25:2693–2703

    Article  Google Scholar 

  49. Draine BT, Flatau PJ (2012) Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Opt Express 20:1247–1252

    Article  Google Scholar 

  50. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangita Roopak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roopak, S., kumar Pathak, N., Sharma, R. et al. Numerical Simulation of Extinction Spectra of Plasmonically Coupled Nanospheres Using Discrete Dipole Approximation: Influence of Compositional Asymmetry. Plasmonics 11, 1603–1612 (2016). https://doi.org/10.1007/s11468-016-0216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0216-3

Keywords

Navigation