Skip to main content
Log in

Design of All-Optical Universal Gates Using Plasmonics Mach-Zehnder Interferometer for WDM Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

All optical integrated circuits have great application in high-speed computing and information processing to overcome the limitation of conventional electronics. In this work, a novel design of all optical universal gates using optical Kerr-effect and optical bistability of a plasmonics-based Mach-Zehnder interferometer (MZI) has been proposed. A MZI is capable for switching of light which depends on the intensities of optical input signal. The study of device is carried out using finite-difference-time-domain (FDTD) method and verified using MATLAB simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cotter D, Manning RJ, Blow KJ, Ellis AD, Kelly AE, Nesset D, Phillips ID, Poustie AJ, Rogers DC (1999) Nonlinear optics for high-speed digital information processing. Science 286:1523–1528

    Article  CAS  PubMed  Google Scholar 

  2. Wu YD (2004) Nonlinear all-optical switching device by using the spatial soliton collision. Fiber and Integrated Optics 23:387–404

    Article  Google Scholar 

  3. Kumar S, Bisht A, Singh G, Sharma S, Amphawan A (2015) Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach Zehnder interferometers. Appl Opt 54:8479–8484

    Article  CAS  PubMed  Google Scholar 

  4. Sribashyam S, Ramachandran M, Prince S, Ravi BR (2015) Design of full-adder and subtractor based on MZI-SOA. IEEE proc., signal processing and communication engineering system 14984708, 19-21

  5. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, 1997 Guiding of a one-dimensional optical bema with nanometer diameter Opt Lett 22, 475–477 (1997)

  6. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  PubMed  Google Scholar 

  7. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip scale technology. Mater Today 9(20–27)

  8. Brongersma ML, Zia R, Schuller JA (2007) Plasmonics—the missing link between nanoelectronics and microphotonics. Applied Physics B 89(221–223)

  9. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  PubMed  Google Scholar 

  10. Weeber J-C, Dereux A, Girard C, Krenn JR, Goudonnet J-P (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys Rev B 60(9061)

  11. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  PubMed  Google Scholar 

  12. Veronis G, Fan S (2005) Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30:3359–3361

    Article  PubMed  Google Scholar 

  13. Zia R, Selker MD, Brongersma ML (2005) Leaky and bound modes for surface plasmon waveguides. Physics Review B 71(165431)

  14. Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen MS, Bozhevolnyi SI (2005) Integrated optical components utilizing long-range surface plasmon polaritons. J Lightwave Technol 23:413–422

    Article  Google Scholar 

  15. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  CAS  Google Scholar 

  16. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:539

    Article  Google Scholar 

  17. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72:075405

    Article  CAS  Google Scholar 

  18. Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. ApplPhys Lett 90:181102

    Article  CAS  Google Scholar 

  19. Xiao S, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14:2932–2937

    Article  PubMed  Google Scholar 

  20. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874–2876

    Article  PubMed  Google Scholar 

  21. Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M, Nakagaki M (2008) Characteristics of gap plasmon waveguide with stub structures. Opt Express 16:16314–16325

    Article  PubMed  Google Scholar 

  22. Zia R, Selker MD, Catrysse PB, Brongersma ML (2004) Geometries and materials for subwavelength surface plasmon modes. JOSA A 21(2442–2446)

  23. Min C, Veronis G (2009) Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt Express 17:10757–10766

    Article  CAS  PubMed  Google Scholar 

  24. Tejeira FL, Rodrigo SG, Moreno LM, Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3(324–328)

  25. Yu Z, Veronis G, Fan S, Brongersma ML (2008) Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl Phys Lett 92:041117

    Article  CAS  Google Scholar 

  26. J. A. Pereda, A. Vegas and Prieto A., An improved compact 2D full-wave FDTD method for general guided wave structures Microwave Opt. Tech. Lett 38, 331–336 (2003)

  27. Liu XF, Ke ML, Qiu BC, Bryce AC, Marsh JH (2000) Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch. Indium Phosphide and Related Materials Conf Proc International Conference 412

  28. Ehlers H, Schlak M, Fischer UHP (2001) Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems. Optical Fiber Communication Conference and Exhibit 3:WDD66–WDD61

    Google Scholar 

  29. Pavelescu L (2001) Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides International 1. Semiconductor Conf CAS Proceedings 201

  30. Yabu T, Geshiro M, Kitamura T, Nishida K, Sawa S (2002) All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J Quantum Electron 38:37–46

    Article  CAS  Google Scholar 

  31. Kan’an AM, Likam WP (1997) Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer. J. Opt. Soc. Am. B 14:3217–3223

    Article  Google Scholar 

  32. Bader MA et al (2002) Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching. J Opt Soc Am B 19:2250–2262

    Article  CAS  Google Scholar 

  33. Kumar S, Singh L (2016) Proposed new approach to design all optical AND gate using plasmonic based Mach-Zehnder interferometer for high speed communication. Proc. SPIE 9884, Nanophotonics VI:98842D

    Google Scholar 

  34. Kumar S, Singh L, Swarnakar S (2017) Design of one bit magnitude comparator using nonlinear plasmonic waveguide. Plasmonics 12(2):369-375

  35. Y. H. Pramono and Endarko, Nonlinear waveguides for optical logic and computation Journal of Nonlinear Optical Physics & Materials 10, 209 (2001)

  36. Agrawal GP (2006) Nonlinear fiber optics Academic press, 3rd edn

    Google Scholar 

  37. Loeb ML, Stilwell GR (1988) High-speed data transmission on an optical fiber using a byte-wide WDM system. J Lightwave Technol 6:1306–1311

    Article  Google Scholar 

  38. Shao S-K, Kao M-S (1994) WDM coding for high-capacity lightwave systems. J Lightwave Technol 12:137–148

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. K.K. Raina, Vice-Chancellor of DIT University, Dehradun, for the encouragement and support during the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Appendix: Mathematical formulation of single MZI

Appendix: Mathematical formulation of single MZI

When signal is propagated through 3-dB coupler, it splits into two ports, and mathematically can be written as [27,28,29,30]

$$ \begin{array}{c} A=\sqrt{1-{\alpha}_1}\left({E}_{in}\right)+ j\sqrt{\alpha_1}(0)\\ {} B= j\sqrt{\alpha_1}\left({E}_{in}\right)+\sqrt{1-{\alpha}_1}(0)\end{array} $$
(6)

where E in is the input optical signal intensity and α 1 is attenuation constant of first directional coupler shown in Fig. 1. Equation (6) can be rewritten in matrix form as

$$ \left[\begin{array}{c} A\\ {} B\end{array}\right]=\left[\begin{array}{c}\sqrt{1-{\alpha}_1}\kern0.5em j\sqrt{\alpha_1}\\ {}\begin{array}{cc} j\sqrt{\alpha_1}& \sqrt{1-{\alpha}_1}\end{array}\end{array}\right]\left[\begin{array}{c}{E}_{in}\\ {}0\end{array}\right] $$
(7)

Further propagation of signals from output of first directional coupler through two linear arms of MZI will reach at point C and D and can be written as

$$ \begin{array}{c} C= A{e}^{- j{\varphi}_1}\\ {} D= B{e}^{- j{\varphi}_2}\end{array} $$
(8)

where φ 1 has value equal to zero since there is no phase difference occur in first linear arm and φ 2 is phase difference in second linear arm due to Kerr material [36],

$$ {\varphi}_2=\varDelta \varphi =\left(2\pi /\lambda \right)\left({\overset{\sim }{n}}_x-{\overset{\sim }{n}}_y\right) L $$
(9)

whereas λ is wavelength of operation and L is length of second linear arm of MZI and

$$ \left.\begin{array}{c}{\overset{\sim }{n}}_x={n}_x+\varDelta {n}_x\\ {}{\overset{\sim }{n}}_y={n}_y+\varDelta {n}_y\end{array}\right\} $$
(10)

where n x and n y are linear different refractive indices in second arm of MZI occur due to modal birefringence with low and high intensity of signal, respectively. ∆n x and ∆n y are nonlinear parts of refractive indices because of signal-induced birefringence. If signal is given with low intensity then,

$$ {\varDelta n}_x={2 n}_2{\left|{E}_{in}\right|}^2 $$
(11)

When signal is provided with high intensity then due to cross-phase modulation, refractive index becomes,

$$ {\varDelta n}_y={2 n}_2 b{\left|{E}_{in}\right|}^2,\kern3.75em b={\chi}_{xxyy}^{(3)}/{\chi}_{xxxx}^{(3)} $$
(12)

\( {\chi}_{xxyy}^{(3)} \) and \( {\chi}_{xxxx}^{(3)} \) is third-order susceptibility of nonlinear Kerr material, and b = 1/3 when origin of signal is purely electronic. Using Eq. (9) and (12), phase shift becomes,

$$ {\varphi}_2\equiv {\varDelta \varphi}_L+{\varDelta \varphi}_{NL}=\left(2\pi L/\lambda \right)\left(\varDelta {n}_L+{n}_{2 B}{\left|{E}_{in}\right|}^2\right) $$
(13)

where ∆n L  = n x  − n y and Kerr coefficient n 2B  = 2n 2(1 − b). For high intensity of light ∆φ ≠ 0 and maximum transmission of signal is through second linear arm of MZI and its transmittivity can be obtained as,

$$ {T}_{out1}=\frac{1}{4}{\left|1-{e}^{i{\varphi}_2}\right|}^2={sin}^2\left(\frac{\varDelta \varphi}{2}\right) $$
(14)

When low-intensity of optical signal arrives, the output can be obtained as

$$ {T}_{out2}={cos}^2\left(\frac{\varDelta \varphi}{2}\right) $$
(15)

Thus, Eqs. (14) and (15) give the output of single MZI, when high- and low-intensity signal is fed at its first input port, respectively. This exclusive switching property of MZI has been used for designing the circuit of universal gates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, L. & Chen, NK. Design of All-Optical Universal Gates Using Plasmonics Mach-Zehnder Interferometer for WDM Applications. Plasmonics 13, 1277–1286 (2018). https://doi.org/10.1007/s11468-017-0631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0631-0

Keywords

Navigation