Skip to main content
Log in

Theoretical Study of Sensitivity and Localized Surface Plasmon Resonance of Ag-Dielectric Core-Shell Multi-layered Nanosphere

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonances (LSPRs) of Ag-dielectric-Ag multi-layered nanoshell are studied by quasi-static approximation and plasmon hybridization theory. Absorption properties of multi-layered nanoshell with the silver core and nanoshell separated by a dielectric layer exhibit strong coupling between the core and nanoshell. The result shows absorption spectrum of LSPRS is influenced by the refractive index of surrounding medium, the dielectric constant of middle dielectric layer, the thickness of inner core radius and outer shell layer. LSPR shift of the longest wavelength \(\left |\omega _{-}^{-}\right >\) is red-shifted with increasing the inner core radius. It is interesting to find that longer wavelength \(\left |\omega _{-}^{+}\right >\) mode is mainly effected by the ratio constant of the surrounding medium refractive index ε 4 to the middle layer dielectric constant ε 2. \(\left |\omega _{-}^{+}\right >\) mode takes place a blue-shift with increasing inner core radius when ε 2 > ε 4, a red-shift when ε 2 < ε 4, and no-shifting when ε 2 = ε 4. However, the influence of dielectric layer radius to \(\left |\omega _{-}^{+}\right >\) mode shows the different property as that of increasing the inner core radius. The underlying mechanisms are analyzed with the plasmon hybridization theory and the distribution of induced charge interaction between the inner core and outer shell. In addition, the influence of core radius, middle dielectric layer radius and outer shell radius to sensitivity of Ag-dielectric-Ag multi-layered nanoshell are also reported, a higher sensitivity could be gotten by adjusting geometrical parameters. Our theoretical study could give an easy way to analyze properties of the core-shell nanosphere based on plasmon hybridization theory and the induced charge interaction, and usefully broaden the applications in nano-optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maier S (2007) Plasmonics: fundamentals and application. Springer, Berlin

    Book  Google Scholar 

  2. Novotny L, Hecht B (2006) Principle of nano-ptics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Weng GJ, Li JJ, Zhao JW (2012) Phys E 44:2072

    Article  CAS  Google Scholar 

  4. Zhu J, Zhao SM (2016) Plasmonics 117:659

    Article  CAS  Google Scholar 

  5. Daneshfar N (2015) J Appl Phys 117:123105

    Article  CAS  Google Scholar 

  6. Sharma R, Roopak S, Pathak NK, Ji A, Sharma RP (2016) Plasmonics. doi:10.1007/s11468-016-0349-4

  7. Sobhani A, Manjavacas A, Cao Y, Mclain MJ, Garcładeabajo FJ, Nordlander P, Halas NJ (2015) Nano Lett 15:6946

    Article  CAS  PubMed  Google Scholar 

  8. Wu DJ, Liu XJ (2010) Appl Phys Lett 97:061904

    Article  CAS  Google Scholar 

  9. Liu C, Lv JW, Liu ZT, Zheng SJ, Liu Q, Sun T, Mu HW, Chu PK (2016) Plasmonics. doi:10.1007/s11468-016-0214-5

  10. Chaudhuri RG, Paria S (2011) Chem.Rev 112:2373

    Article  CAS  Google Scholar 

  11. Xia XH, Liu Y, Backman V, Ameer GA (2006) Nanotechnology 17:5435

    Article  CAS  Google Scholar 

  12. Khosravi H, Daneshfar N, Bahari A (2010) Phys Plasmas 17:053302

    Article  CAS  Google Scholar 

  13. Shirzaditabar F, Saliminasab M (2013) Phys Plsmas 20:052109

    Article  CAS  Google Scholar 

  14. Ho JF, Yanchuk BL, Zhang JB (2012) Appl Phys A 117:133

    Article  CAS  Google Scholar 

  15. Averitt RD, Westcott SL, Halas NJ (1999) J Opt Soc Am B 16:1284

    Google Scholar 

  16. Daneshfar N, Bazyari K (2014) Appl Phys A 116:611

    Article  CAS  Google Scholar 

  17. Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) J Appl Phys 739:1043

    Article  Google Scholar 

  18. Bohren CF, Huffman DR (2000) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  19. Johnson PB, Christy RW (1972) Phys Rev B 12:4370

    Article  Google Scholar 

  20. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer Series in Materials Science, vol 25. Springer, Berlin

    Book  Google Scholar 

  21. Prodan E, Radbloff C, Halas NJ, Nordander P (2003) Science 302:419

    Article  CAS  PubMed  Google Scholar 

  22. Prodan E, Nordander P (2004) J Chem Phys 120:5444

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Fei GT, Zhang LD (2011) J Appl Phys 109:054315

    Article  CAS  Google Scholar 

  24. Qian J, Li YD, Chen J, Xu JJ, Sun Q (2014) Phys Chem C 118:8581

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Key Program for Excellent Young Talents in University of Anhui Province (gxyq2017027,gxyqZD2016206), Anhui Provincial Natural Science Foundation (1708085MA10), and the key Scientific ResearchFoundation of Anhui Provincial Education Department under grant nos. (KJ2015A223, KJ2015ZD28, and AQKJ2015B017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YW., Wu, ZW., Zhang, LH. et al. Theoretical Study of Sensitivity and Localized Surface Plasmon Resonance of Ag-Dielectric Core-Shell Multi-layered Nanosphere. Plasmonics 13, 1255–1263 (2018). https://doi.org/10.1007/s11468-017-0627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0627-9

Keywords

Navigation