Skip to main content
Log in

One Pot and Room Temperature Photochemical Synthesis of Seed-Mediated Water Soluble Concentric Ag Nanoplates Without H2O2 and NaBH4 Injection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, we report a novel, simple, one pot, and scalable method for the synthesis of Ag nanoplates with various shapes of triangles, prisms, and disks with controllable size and few nanometer thickness. We combined the salt reduction method and seed-mediated photochemical approach to harvest silver nanoplates. In this approach, NaBH4 and H2O2 were omitted from the procedure completely. UV-Vis spectroscopy revealed that the in-plane plasmon resonance can be tuned from visible up to near-infrared region. Transmission electron microscopy picturized the thin nanotriangle and nanoplate formation. Using FTIR spectroscopy and systematic synthesis of samples with and without insertion of sodium citrate and PVP, we concluded that Na3CA is a “magic” agent playing etchant and reducing roles at the same time and it is not surprisingly a “surfactant” in this work. It was comprehensively studied that in contrary to the published reports based on salt reduction, injection of H2O2 after the microwave activation of Na3CA in the growth solution cannot etch the silver particles and does not result in the formation of nanoplates. This report opens a new insight into the role of low concentration Na3CA in the preparation of silver nanoplates at high concentrations of silver ions using only seed particles as a bright example of Ostwald ripening at nanoscale. We also invented a dynamic method by means of direct injection of silver ion solution during photochemical reaction to tune the in-plane plasmon resonance of nanoplates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9
Scheme 4
Fig. 10
Scheme 5
Fig. 11
Scheme 6
Fig. 12

Similar content being viewed by others

References

  1. An J, Tang B, Ning X, Zhou J, Xu S, Zhao B, Xu W, Corredor C, Lombardi JR (2007) Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. J Phys Chem C 111(49):18055–18059

    Article  CAS  Google Scholar 

  2. Zeng J, Tao J, Li W, Grant J, Wang P, Zhu Y, Xia Y (2011) A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions. Chemistry–An Asian Journal 6(2):376–379

    Article  CAS  Google Scholar 

  3. Zhang JH, Liu HY, Zhan P, Wang ZL, Ming NB (2007) Controlling the growth and assembly of silver nanoprisms. Advanced Functional Materials 17(9):1558–1566

    Article  CAS  Google Scholar 

  4. Paul A, Kenens B, Hofkens J, Uji-i H (2012) Excitation polarization sensitivity of plasmon-mediated silver nanotriangle growth on a surface. Langmuir 28(24):8920–8925

    Article  CAS  Google Scholar 

  5. Zeng Q, Jiang X, Yu A, Lu GM (2007) Growth mechanisms of silver nanoparticles: a molecular dynamics study. Nanotechnology 18(3):035708

    Article  Google Scholar 

  6. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4(2):171–179

    Article  CAS  Google Scholar 

  7. Zhao H, Ning Y, Zhao B, Yin F, Du C, Wang F, Lai Y, Zheng J, Li S, Chen L (2015) Tunable growth of silver nanobelts on monolithic activated carbon with size-dependent plasmonic response. Scientific reports

  8. Moghimi-Rad J, Isfahani TD, Hadi I, Ghalamdaran S, Sabbaghzadeh J, Sharif M (2011) Shape-controlled synthesis of silver particles by surfactant self-assembly under ultrasound radiation. Applied Nano 1(1):27–35

    Article  CAS  Google Scholar 

  9. Jiang X, Zeng Q, Yu A (2006) A self-seeding coreduction method for shape control of silver nanoplates. Nanotechnology 17(19):4929

    Article  CAS  Google Scholar 

  10. Luo M, Huang H, Choi SI, Zhang C, Silva RRD, Peng HC, Li ZY, Liu J, He Z, Xia Y (2015) Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using Pd decahedra of 16 nm in size as seeds. ACS nano 9(10):10523–10532

    Article  CAS  Google Scholar 

  11. Kim MH, Yoon DK, Im SH (2015) Growth pathways of silver nanoplates in kinetically controlled synthesis: bimodal versus unimodal growth. RSC Adv 5(19):14266–14272

    Article  CAS  Google Scholar 

  12. Sun Y, Xia Y (2003) Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv Mater 15(9):695–699

    Article  CAS  Google Scholar 

  13. Lu L, Kobayashi A, Tawa K, Ozaki Y (2006) Silver nanoplates with special shapes: controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chem Mater 18(20):4894–4901

    Article  CAS  Google Scholar 

  14. Roh J, Yi J, Kim Y (2010) Rapid, reversible preparation of size-controllable silver nanoplates by chemical redox. Langmuir 26(14):11621–11623

    Article  CAS  Google Scholar 

  15. Karimipour M, Shabani E, Mollaei M, Molaei M (2015) Microwave synthesis of Ag@ SiO2 core–shell using oleylamine. Journal of Nanoparticle Research 17(1):1–8

    Article  CAS  Google Scholar 

  16. Karimipour M, Ebrahimi M, Abafat Z, Molaei M (2016) Synthesis of Ag@ TiO 2 core-shells using a rapid microwave irradiation and study of their nonlinear optical properties. Opt Mater 57:257–263

    Article  CAS  Google Scholar 

  17. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano letters 3(8):1057–1062

    Article  CAS  Google Scholar 

  18. Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Letters 3(4):485–491

    Article  CAS  Google Scholar 

  19. Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters 3(5):675–679

    Article  CAS  Google Scholar 

  20. Bastys V, Pastoriza-Santos I, Rodríguez-González B, Vaisnoras R, Liz-Marzán LM (2006) Formation of silver nanoprisms with surface plasmons at communication wavelengths. Advanced Functional Materials 16(6):766–773

    Article  CAS  Google Scholar 

  21. Wu X, Redmond PL, Liu H, Chen Y, Steigerwald M, Brus L (2008) Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the Am Chem Soc 130(29):9500–9506

    Article  CAS  Google Scholar 

  22. Tsuji T, Tsuji M, Hashimoto S (2011) Utilization of laser ablation in aqueous solution for observation of photoinduced shape conversion of silver nanoparticles in citrate solutions. Journal of Photochemistry and Photobiology A: Chemistry 221(2):224–231

    Article  CAS  Google Scholar 

  23. Xue C, Mirkin CA (2007) pH-switchable silver nanoprism growth pathways. Angewandte Chem Aust 119(12):2082–2084

    Article  Google Scholar 

  24. Aherne D, Ledwith DM, Gara M, Kelly JM (2008) Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Advanced Functional Materials 18(14):2005–2016

    Article  CAS  Google Scholar 

  25. Dong X, Ji X, Jing J, Li M, Li J, Yang W (2010) Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J Phys Chem C 114(5):2070–2074

    Article  CAS  Google Scholar 

  26. Cathcart N, Kitaev V (2011) Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly. ACS Nano 5(9):7411–7425

    Article  CAS  Google Scholar 

  27. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1903

    Article  CAS  Google Scholar 

  28. Jin R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425(6957):487–490

    Article  CAS  Google Scholar 

  29. Maillard M, Huang P, Brus L (2003) Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Letters 3(11):1611–1615

    Article  CAS  Google Scholar 

  30. Métraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials 17(4):412–415

    Article  Google Scholar 

  31. Jiang XC, Chen CY, Chen WM, Yu AB (2009) Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir 26(6):4400–4408

    Article  Google Scholar 

  32. Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc 133(46):18931–18939

    Article  CAS  Google Scholar 

  33. Tsuji M, Gomi S, Maeda Y, Matsunaga M, Hikino S, Uto K, Tsuji T, Kawazumi H (2012) Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir 28(24):8845–8861

    Article  CAS  Google Scholar 

  34. Yu H, Zhang Q, Liu H, Dahl M, Joo JB, Li N, Wang L, Yin Y (2014) Thermal synthesis of silver nanoplates revisited: a modified photochemical process. ACS Nano 8(10):10252–10261

    Article  CAS  Google Scholar 

  35. Li K, Jia X, Tang A, Zhu X, Meng H, Wang Y (2012) Preparation of spherical and triangular silver nanoparticles by a convenient method. Integrated Ferroelectrics 136(1):9–14

    Article  CAS  Google Scholar 

  36. Wu C, Mosher BP, Lyons K, Zeng T (2010) Reducing ability and mechanism for polyvinylpyrrolidone (PVP) in silver nanoparticles synthesis. Journal of nanoscience and nanotechnology 10(4):2342–2347

    Article  CAS  Google Scholar 

  37. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions 44(41):17883–17905

    Article  CAS  Google Scholar 

  38. Yu DG, Zhu LM, Branford-White CJ, Yang JH, Wang X, Li Y, Qian W (2011) Solid dispersions in the form of electrospun core-sheath nanofibers. Int J Nanomedicine 6:3271–3280

    Article  CAS  Google Scholar 

  39. Zhang Z, Zhao B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Sol State Chem 121(1):105–110

    Article  CAS  Google Scholar 

  40. CHAHAL RP, MAHENDIA S, Tomar AK, KUMAR S (2010) Effect of ultraviolet irradiation on the optical and structural characteristics of in-situ prepared PVP-Ag nanocomposites. Digest Journal of Nanomaterials and Biostructures 5:569–575

    Google Scholar 

  41. Giri A, Makhal A, Ghosh B, Raychaudhuri AK, Pal SK (2010) Functionalization of manganite nanoparticles and their interaction with biologically relevant small ligands: picosecond time-resolved FRET studies. Nano 2(12):2704–2709

    CAS  Google Scholar 

  42. Lu Q, Lee KJ, Lee KB, Kim HT, Lee J, Myung NV, Choa YH (2010) Investigation of shape controlled silver nanoplates by a solvothermal process. Journal of colloid and interface science 342(1):8–17

    Article  CAS  Google Scholar 

  43. Jakab A, Rosman C, Khalavka Y, Becker J, Trügler A, Hohenester U, Sönnichsen C (2011) Highly sensitive plasmonic silver nanorods. ACS nano 5(9):6880–6885

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karimipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimipour, M., Razavi, F.S. & Molaei, M. One Pot and Room Temperature Photochemical Synthesis of Seed-Mediated Water Soluble Concentric Ag Nanoplates Without H2O2 and NaBH4 Injection. Plasmonics 13, 921–932 (2018). https://doi.org/10.1007/s11468-017-0589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0589-y

Keywords

Navigation