Skip to main content
Log in

Dynamical and Static Spin Susceptibilities of Doped Gapped Graphene Nanoribbon Due to Local Electronic Interaction

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present the behaviors of both dynamical and static spin susceptibilities of doped gapped armchair graphene nanoribbon using the Green’s function approach in the context of Hubbard model Hamiltonian. Specially, the effects of spin polarization and gap parameter on the spin excitation modes of armchair graphene nanoribbon are investigated via calculating correlation function of spin density operators. Our results show the increase of electron concentration leads to disappear low frequency spin excitation mode for gapless case. We also show that low frequency excitation mode for both gapped and gapless nanoribbon disappears under spin full polarization condition. Finally, the electron density dependence of static charge structure factor of armchair graphene nanoribbon is studied. The effects of both gap parameter and magnetic ordering on the static structure factor are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geim AK, Macdonald AH (2009) Phys Today 60:35

    Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubons SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  3. Ohta T, Bostwick A, Seyller T, Horn K, Rorenberg E (2006) Science 313:951

    Article  CAS  Google Scholar 

  4. Katsnelson MI, Novoselov KS, Geim AK (2006) Nat Phys 2:620

    Article  CAS  Google Scholar 

  5. Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) J Phys Soc Jpn 65:1920

    Article  CAS  Google Scholar 

  6. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Phys Rev B 54:17954

    Article  CAS  Google Scholar 

  7. Ezawa M (2006) Phys Rev B 73:045432

    Article  Google Scholar 

  8. Zhang Y, Tan T-W, Stormer HL, Kim P (2005) Nature (london) 438:201

    Article  CAS  Google Scholar 

  9. Schedin, Geim AK (2006) Nat Phys 2:177

    Article  Google Scholar 

  10. Berger C (2004) J Phys Chem B 108:19912

    Article  CAS  Google Scholar 

  11. Wakabayashi K, Sigrist M, Fujita M (1998) J Phys Soc Japan 67:2089

    Article  CAS  Google Scholar 

  12. Son Y-W, Cohen ML, Louie SG (2006) Nature (London) 444: 347

    Article  CAS  Google Scholar 

  13. Son Y -W, Cohen ML, Louie SG (2006) Phys Rev Lett 97:216803

    Article  Google Scholar 

  14. Sasaki K, Murakami S, Saito R (2006) J Phys Soc Jpn 75:074713

    Article  Google Scholar 

  15. Sasaki K, Murakami S, Saito R (2006) Appl Phys Lett 88:113110

    Article  Google Scholar 

  16. Brey L, Fertig HA (2006) Phys Rev B 73:235411

    Article  Google Scholar 

  17. Wakabayashi K, Sigrist M (2000) Phys Rev Lett 84:3390

    Article  CAS  Google Scholar 

  18. Wakabayashi K (2001) Phys Rev B 64:125428

    Article  Google Scholar 

  19. Zhou SY, Gweon G-H, Fedorov AV, First PN, de Heer WA, Lee D-H, Guinea F, Castro Neto AH, Lanzara A (2007) Nat Mater 6:770

  20. Semenoff GW, Semenoff V, Zhou F (2008) Phys Rev Lett 101:087204

    Article  CAS  Google Scholar 

  21. Wehling TO, Sasioglu E, Freidrich C, Lichtenstein AI, Katsnelson MI, Blugel S (2011) Phys Rev Lett 106:236805

    Article  CAS  Google Scholar 

  22. Sorella S, Tosatti E (1992) Europhys Lett 19:699

    Article  Google Scholar 

  23. Baskaran G, Jafari SA (2002) Phys Rev Lett 89:016402

    Article  CAS  Google Scholar 

  24. Peres NM, Araujo MAN, Bozi D (2004) Phys Rev B 70:195122

    Article  Google Scholar 

  25. Peres NM, Araujo MAN (2002) Phys Rev B 65:132404

    Article  Google Scholar 

  26. Doniach S, Sondheimer EH (1999) Green’s functions for solid state physicists. Imperial College Press, London

    Google Scholar 

  27. Stauber T, Schliemann J, Peres NM (2010) Phys Rev B 81: 085409

    Article  Google Scholar 

  28. Wakabayashi K, Fujita M, Ajiki H, Sigrist M (1999) Phys Rev B 59:8271

    Article  CAS  Google Scholar 

  29. Peres NMR, Guinea F, Castro Neto AH (2005) Phys Rev B 72:174406

    Article  Google Scholar 

  30. Zheng H, Wang ZF, Luo T, Shi QW, Chen J (2007) Phys Rev B 75:165414

    Article  Google Scholar 

  31. Mahan GD (1993) Many Particle Physics. Plenumn Press, New York

    Google Scholar 

  32. Solyom J (2010) Fundamentals of the physics of solids, vol III. Springer, New York

  33. Dedkov YS, Shikin AM, Adamchuk VK, Molodtsov SL, Laubschat C, Bauer A, Kaindl G (2001) Phys Rev B 64:035405

    Article  Google Scholar 

  34. Faris D, Shikin AM, Rieder KH, Dedkov YS (1999) J Phys.: Condens Metter 11:8453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rezania.

Appendix: The Explicit Expressions of Factors in Eq. 18

Appendix: The Explicit Expressions of Factors in Eq. 18

In this Appendix, we present the full expression of factors which has been mentioned in Eq. 18.

$$\begin{array}{@{}rcl@{}} \mathcal{F}&=&{f^{2}_{1}}(k_{x},p){f^{2}_{1}}(k_{x}+q_{x},p^{\prime})+ f_{1}(k_{x},p)f_{3}(k_{x},p)f_{1}(k_{x}+q_{x},p^{\prime})f^{*}_{3}(k_{x}+q_{x},p^{\prime}) \\&&+c.c.+ |f_{3}(k_{x},p)|^{2}|f_{3}(k_{x}+q_{x},p^{\prime})|^{2}|\\ \mathcal{I}&=&{f^{2}_{1}}(k_{x},p){f^{2}_{2}}(k_{x}+q_{x},p^{\prime})+ f_{1}(k_{x},p)f_{3}(k_{x},p)f^{*}_{4}(k_{x}+q_{x},p^{\prime})f_{2}(k_{x}+q_{x},p^{\prime})\\&&+c.c.+ |f_{3}(k_{x},p)|^{2}|f_{4}(k_{x}+q_{x},p^{\prime})|^{2}|\\ \mathcal{J}&=&{f^{2}_{1}}(k_{x},p){f^{2}_{1}}(k_{x}+q_{x},p^{\prime})+ f_{1}(k_{x},p)f_{3}(k_{x},p)f^{*}_{3}(k_{x}+q_{x},p^{\prime})f_{1}(k_{x}+q_{x},p^{\prime})\\&&+c.c.+ |f_{3}(k_{x},p)|^{2}|f_{3}(k_{x}+q_{x},p^{\prime})|^{2}|\\ \mathcal{K}&=&{f^{2}_{1}}(k_{x},p){f^{2}_{1}}(k_{x}+q_{x},p^{\prime})+ f_{1}(k_{x},p)f_{3}(k_{x},p)f_{4}^{*}(k_{x}+q_{x},p^{\prime})f_{2}(k_{x}+q_{x},p^{\prime})\\&&+c.c.+ |f_{3}(k_{x},p)|^{2}|f_{4}(k_{x}+q_{x},p^{\prime})|^{2}|\\ \mathcal{L}&=&{f^{2}_{2}}(k_{x},p){f^{2}_{1}}(k_{x}+q_{x},p^{\prime})+ f_{2}(k_{x},p)f_{4}(k_{x},p)f^{*}_{3}(k_{x}+q_{x},p^{\prime})f_{1}(k_{x}+q_{x},p^{\prime})\\&&+c.c.+ |f_{4}(k_{x},p)|^{2}|f_{3}(k_{x}+q_{x},p^{\prime})|^{2}|\\ \mathcal{M}&=&{f^{2}_{2}}(k_{x},p){f^{2}_{2}}(k_{x}+q_{x},p^{\prime})+ f_{2}(k_{x},p)f_{4}(k_{x},p)f^{*}_{4}(k_{x}+q_{x},p^{\prime})f_{2}(k_{x}+q_{x},p^{\prime})\\&&+c.c.+ |f_{4}(k_{x},p)|^{2}|f_{4}(k_{x}+q_{x},p^{\prime})|^{2}|\\ \mathcal{N}&=&{f^{2}_{2}}(k_{x},p){f^{2}_{1}}(k_{x}+q_{x},p^{\prime})+ f_{2}(k_{x},p)f_{4}(k_{x},p)f_{3}(k_{x}+q_{x},p^{\prime})f_{1}(k_{x}+q_{x},p^{\prime})\\&&+c.c.+ |f_{4}(k_{x},p)|^{2}|f_{3}(k_{x}+q_{x},p^{\prime})|^{2}|\\ \mathcal{N}&=&{f^{2}_{2}}(k_{x},p){f^{2}_{2}}(k_{x}+q_{x},p^{\prime})+ f_{2}(k_{x},p)f_{4}(k_{x},p)f^{*}_{4}(k_{x}+q_{x},p^{\prime})f_{2}(k_{x}+q_{x},p^{\prime})\\&&+c.c.+ |f_{4}(k_{x},p)|^{2}|f_{4}(k_{x}+q_{x},p^{\prime})|^{2}| \end{array} $$
(21)

The functions f 1,f 2,f 3,and f 4 have been introduced in Eq. 9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezania, H., Abdi, A. Dynamical and Static Spin Susceptibilities of Doped Gapped Graphene Nanoribbon Due to Local Electronic Interaction. Plasmonics 13, 845–856 (2018). https://doi.org/10.1007/s11468-017-0580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0580-7

Keywords

Navigation