Skip to main content
Log in

Tunable Surface Plasmon Resonance Sensor Based on Photonic Crystal Fiber Filled with Gold Nanoshells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor, whose operating wavelength range is tunable. Gold nanoshells, consisting of silica cores coated with thin gold shells, are designed to be the functional material of the sensor because of their attractive optical properties. It is demonstrated that the resonant wavelength of the sensor can be precisely tuned in a broad range, 660 nm to 3.1 μm, across the visible and near-infrared regions of the spectrum by varying the diameter of the core and the thickness of the shell. Furthermore, the effects of structural parameters of the sensor on the sensing properties are systematically analyzed and discussed based on the numerical simulations. It is observed that a high spectral sensitivity of 4111.4 nm/RIU with the resolution of 2.45 × 10−5 RIU can be achieved in the sensing range of 1.33–1.38. These features make the sensor of great importance for a wide range of applications, especially in biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensor Actuat B-Chem 54:3–15

    Article  CAS  Google Scholar 

  2. Fan Z, Li S, Liu Q, An G (2015) High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J 7:1–9

    Article  CAS  Google Scholar 

  3. Shuai B, Xia L, Zhang Y, Liu D (2012) A multi-core holey fiber plasmonic sensor with large detection range and high linearity. Opt Express 20:5974–5986

    Article  CAS  Google Scholar 

  4. Hao CJ, Lu Y, Wang MT, Wu BQ, Duan LC, Yao JQ (2013) Surface plasmon resonance refractive index sensor based on active photonic crystal fiber. IEEE Photonics J 5:1–8

    Article  Google Scholar 

  5. Dash JN, Jha R (2014) SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonic Tech L 26:595–598

    Article  CAS  Google Scholar 

  6. Akowuah EK, Gorman T, Haxha S, Oliver JV (2010) Dual channel planar waveguide surface plasmon resonance biosensor for an aqueous environment. Opt Express 18:24412–24422

    Article  CAS  Google Scholar 

  7. Nooke A, Beck U, Hertwig A, Krause A, Kruger H, Lohse V, Negendank D, Steinbach J (2010) On the application of gold based SPR sensors for the detection of hazardous gases. Sensor Actuat B-Chem 149:194–198

    Article  CAS  Google Scholar 

  8. Knight JC, Russell PS (2002) New ways to guide light. Science 296:276–277

    Article  CAS  Google Scholar 

  9. Hassani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14:11616–11621

    Article  CAS  Google Scholar 

  10. Gauvreau B, Hassani A, Fehri MF, Kabashin A, Skorobogatiy M (2007) Photonic bandgap fiber-based surface plasmon resonance sensors. Opt Express 15:11413–11426

    Article  CAS  Google Scholar 

  11. Dash JN, Jha R (2014) Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonic Tech L 26:1092–1095

    Article  CAS  Google Scholar 

  12. Otupiri R, Akowuah EK, Haxha S (2015) Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt Express 23:15716–15727

    Article  CAS  Google Scholar 

  13. Lu Y, Hao CY, Wu BQ, Huang XH, Fu XY, Yao JQ (2012) Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments. Sensors 12:12016–12025

    Article  CAS  Google Scholar 

  14. Li H, Ma X, Dong J, Qian W (2009) Development of methodology based on the formation process of gold nanoshells for detecting hydrogen peroxide scavenging activity. Anal Chem 81:8916–8922

    Article  CAS  Google Scholar 

  15. Halas N (2002) The optical properties of nanoshells. Opt Photonics News 13:26–30

    Article  CAS  Google Scholar 

  16. Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37:898–911

    Article  CAS  Google Scholar 

  17. Tam F, Halas N (2003) Plasmon response of nanoshell dopants in organic films: a simulation study. Prog Org Coat 47:275–278

    Article  CAS  Google Scholar 

  18. Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75:2897–2899

    Article  CAS  Google Scholar 

  19. Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marquez M, Xia YN (2007) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 38:1084–1094

    Google Scholar 

  20. Shi W, Sahoo Y, Swihart MT, Prasad PN (2005) Gold nanoshells on polystyrene cores for contral of surface plasmon resonance. Langmuir 21:1610–1617

    Article  CAS  Google Scholar 

  21. Phonthammachai N, Kah JCY, Jun G, Sheppard CJR, Olivo MC, Mhaisalkar SG, White TJ (2008) Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes. Langmuir 24:5109–5112

    Article  CAS  Google Scholar 

  22. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305

    Article  CAS  Google Scholar 

  23. Lu Y, Wang MT, Hao CJ, Zhao ZQ (2014) Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J 6:1–7

    Google Scholar 

  24. Luan N, Wang R, Lv W, Lu Y, Yao J (2013) Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14:16035–16045

    Article  Google Scholar 

  25. Akowuah EK, Gorman T, Ademgil H, Haxha S (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Elect 48:1403–1410

    Article  CAS  Google Scholar 

  26. Johnson PB, Chtisty RW (1972) Optical-constants of noble-metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  27. Bauch M, Toma K, Toma M, Zhang Q, Dostalek J (2014) Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 9:781–799

    Article  CAS  Google Scholar 

  28. Oldenburg SJ, Westcott SL, Averitt RD, Halas NJ (1999) Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J Chem Phys 111:4729–4735

    Article  CAS  Google Scholar 

  29. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas HJ (2010) Nanosphere in a nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383

    Article  CAS  Google Scholar 

  30. Erts D, Olin H, Ryen L, Olsson E, Tholen A (2000) Maxwell and Sharvin conductance in gold point contacts investigated using TEM-STM. Phys Rev B 61:12725–12727

    Article  CAS  Google Scholar 

  31. Penninkhof JJ, Sweatlock LA, Moroz A, Atwater HA, Blaaderen A, Polman A (2008) Optical cavity modes in gold shell colloids. J Appl Phys 103:1–7

    Article  Google Scholar 

  32. Dash JN, Jha R (2015) On the performance of graphene-based D-shaped photonic crystal fiber biosensor using surface plasmon resonance. Plasmonics 10:1123–1131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China. (973 Program) (Grant Number: 2010CB327801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Lu, Y., Yang, X. et al. Tunable Surface Plasmon Resonance Sensor Based on Photonic Crystal Fiber Filled with Gold Nanoshells. Plasmonics 13, 763–770 (2018). https://doi.org/10.1007/s11468-017-0570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0570-9

Keywords

Navigation