Skip to main content
Log in

Ultra-Broadband Excitations of Plasmonic Waveguides by Bowtie Apertures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The plasmonic bowtie antenna constantly attracts researchers’ interests recently. In this paper, we design and demonstrate polarization sensitive and ultra-broadband excitations of plasmonic waveguides. The structure is composed of a bowtie aperture aligned near a stripe waveguide, which is fabricated on a single silver layer on top of a silica substrate. The dependence of resonance spectra on the arm length of the bowtie aperture is simulated. Only when the incident polarization is parallel to the waveguide direction, the plasmonic bound modes can be correctly excited. Importantly, an extremely wide spectrum bandwidth of 610 nm which covers most of the visible region from 500 nm till the near infrared light of 1 μm is achieved. Our investigations will have intensive applications in next-generation plasmonic integrated chips and functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen J (2013) Numerical study of a nonplanar two-stage surface plasmonic lens illuminated by a radially polarized beam. Plasmonics 8(2):931–936

    Article  CAS  Google Scholar 

  2. Chen J, Zhu L, Wang F, Ma W (2013) An integrated multistage nanofocusing system. Plasmonics 8 (4):1559–1565

    Article  CAS  Google Scholar 

  3. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver Nanowires as surface plasmon resonators. Phys Rev Lett 95(25):257,403

    Article  Google Scholar 

  4. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff Pa (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669

    Article  CAS  Google Scholar 

  5. Fang Z, Fan L, Lin C, Zhang D, Meixner AJ, Zhu X (2011) Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett 11(4):1676–1680

    Article  CAS  Google Scholar 

  6. Fischer H, Martin OJF (2008) Engineering the optical response of plasmonic nanoantennas. Opt Express 16(12):9144–9154

    Article  Google Scholar 

  7. Hatab NA, Hsueh CH, Gaddis AL, Retterer ST, Li JH, Eres G, Zhang Z, Gu B (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett 10(12):4952–4955

    Article  CAS  Google Scholar 

  8. Hill MT, Marell M, Leong ESP, Smalbrugge B, Zhu Y, Sun M, van Veldhoven PJ, Geluk EJ, Karouta F, Oei YS, Nötzel R, Ning CZ, Smit MK (2009) Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt Express 17(13):11,107–11,112

    Article  CAS  Google Scholar 

  9. Jin EX, Xu X (2006) Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture. Appl Phys B Lasers Opt 84(1–2):3–9

    Article  CAS  Google Scholar 

  10. Kinzel EC, Xu X (2009) High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures. Opt Express 17(10):8036–8045

    Article  CAS  Google Scholar 

  11. Ko KD, Kumar A, Fung KH, Ambekar R, Liu GL, Fang NX, Toussaint KC (2011) Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett 11(1):61–65

    Article  CAS  Google Scholar 

  12. Lee HW, Papadakis G, Burgos SP, Chander K, Kriesch A, Pala R, Peschel U, Atwater HA (2014) Nanoscale conducting oxide plasmostor. Nano Lett 14(11):6463–6468

    Article  CAS  Google Scholar 

  13. Lin TR, Chang SW, Chuang SL, Zhang Z, Schuck PJ (2010) Coating effect on optical resonance of plasmonic nanobowtie antenna. Appl Phys Lett 97(6):3–5

    Google Scholar 

  14. Liu N, Wei H, Li J, Wang Z, Tian X, Pan A, Xu H (2013) Plasmonic amplification with ultra-high optical gain at room temperature. Sci Rep 3(01967)

  15. Lu YJ, Kim J, Chen HY, Wu C, Dabidian N, Sanders CE, Wang CY, Lu MY, Li BH, Qiu X, Chang WH, Chen LJ, Shvets G, Shih CK, Gwo S (2012) Plasmonic nanolaser using epitaxially grown silver film. Science 337(6093):450–453

    Article  CAS  Google Scholar 

  16. Maier Sa (2006) Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides. Opt Commun 258:295–299

    Article  CAS  Google Scholar 

  17. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photon 2(8):496–500

    Article  CAS  Google Scholar 

  18. Roxworthy BJ, Ko KD, Kumar A, Fung KH, Chow EKC, Liu GL, Fang NX, Toussaint KC (2012) Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett 12(2):796–801

    Article  CAS  Google Scholar 

  19. Sederberg S, Elezzabi AY (2011) Sierpiski fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna. Opt Express 19(11):10,456–10,461

    Article  Google Scholar 

  20. Wen J (2011) Excitation and detection of highly confined plasmonic gap modes with subwavelength dimensions. PhD thesis

  21. Wen J, Romanov S, Peschel U (2009) Excitation of plasmonic gap waveguides by nanoantennas. Opt Express 17(8):5925–5932

    Article  CAS  Google Scholar 

  22. Wen J, Banzer P, Kriesch A, Ploss D, Schmauss B, Peschel U (2011) Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas. Appl Phys Lett 98 (10):101,109

    Article  Google Scholar 

  23. Wen J, Chen J, Wang K, Dai B, Huang Y, Zhang D (2016) Broadband plasmonic logic input sources constructed with dual square ring resonators and dual waveguides. IEEE Photonics J 8(2):1–9

    Google Scholar 

  24. Yao W, Liu S, Liao H, Li Z, Sun C, Chen J, Gong Q (2015) Efficient directional excitation of surface plasmons by a single-element Nanoantenna. Nano Lett 15(5):3115–3121

    Article  CAS  Google Scholar 

  25. Zhang D, Zhu M, Zhu L, Xu Q, Chen J (2014) Controlling the polarization orientation of highly confined and enhanced surface plasmon polaritons. RSC Adv 4:61 063:056–61

    Google Scholar 

  26. Zhong Y, Wen J, Chen J, Zhu L, Gao X, Tao C, Zhang D (2016) A highly efficient plasmonic lens based on a single annular ring with cross section of an asymmetric slot. IEEE Photonics Journal 8(2):1–9

    Google Scholar 

  27. Zhu L, Sun M, Zhang D, Yu J, Wen J, Chen J (2015) Multifocal array with controllable polarization in each focal spot. Opt Express 23(19):24,688

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Basic Research Program of China (973 Program) (2015CB352001), Shanghai Municipal Science Instrument Important Project (14142200902), National Natural Science Foundation of China (61378060, 61205156), and 151Talent Project of Zhejiang Province (12-2-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Wang, K., Feng, H. et al. Ultra-Broadband Excitations of Plasmonic Waveguides by Bowtie Apertures. Plasmonics 12, 1257–1262 (2017). https://doi.org/10.1007/s11468-016-0383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0383-2

Keywords

Navigation