Skip to main content
Log in

Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, the enhanced optical transmission through a special type of aperture of a bowtie shape is investigated through near-field imaging and finite-difference numerical analysis. Under linear polarizations in two orthogonal directions, the optical near fields of the bowtie aperture and comparable square and rectangular apertures made in gold and chromium thin films are measured and compared. The bowtie aperture is able to provide a nanometer-sized optical spot when the incident light is polarized across the bowtie gap and delivers a considerable amount of light. Localized surface plasmons are clearly observed in the near-field images for both bowtie and rectangular apertures in gold, but invisible in chromium. Finite-difference time-domain calculations reveal that, depending on the polarization of the incident light, the unique optical properties of the bowtie aperture are a result of either the optical waveguide and the coupled surface plasmon polariton modes existing in the bowtie gap or the coupling between the two open arms of the bowtie aperture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  2. H. Bethe, Phys. Rev. 66, 163 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  3. D.E. Grupp, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, T. Thio, Appl. Phys. Lett. 77, 1569 (2000)

    Article  ADS  Google Scholar 

  4. T. Thio, H.F. Ghaemi, H.J. Lezec, P.A. Wolff, T.W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999)

    Article  ADS  Google Scholar 

  5. A. Degiron, H.J. Lezec, W.L. Barnes, T.W. Ebbesen, Appl. Phys. Lett. 81, 4327 (2002)

    Article  ADS  Google Scholar 

  6. W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004)

    Article  ADS  Google Scholar 

  7. S. Williams, A. Stafford, T. Rogers, S. Bishop, J. Coe, Appl. Phys. Lett. 85, 1472 (2004)

    Article  ADS  Google Scholar 

  8. J. Rivas, C. Schotsch, P. Bolivar, H. Kurz, Phys. Rev. B 68, 201306 (2003)

    Article  ADS  Google Scholar 

  9. H. Cao, A. Nahata, Opt. Express 12, 1004 (2004)

    Article  ADS  Google Scholar 

  10. H. Ghaemi, T. Thio, D. Grupp, T.W. Ebbesen, H. Lezec, Phys. Rev. B 58, 6779 (1998)

    Article  ADS  Google Scholar 

  11. E. Popov, M. Neviere, S. Enoch, R. Reinisch, Phys. Rev. B 62, 16100 (2000)

    Article  ADS  Google Scholar 

  12. L. Martín-Moreno, F. García-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, T.W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001)

    Article  ADS  Google Scholar 

  13. A. Krishnan, T. Thio, T. Kima, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, F. García-Vidal, Opt. Commun. 200, 1 (2001)

    Article  ADS  Google Scholar 

  14. W. Liu, D. Tsai, Phys. Rev. B 65, 155423 (2002)

    Article  ADS  Google Scholar 

  15. S. Darmanyan, A. Zayats, Phys. Rev. B 67, 035424 (2003)

    Article  ADS  Google Scholar 

  16. H. Lezec, T. Thio, Opt. Express 12, 3629 (2004)

    Article  ADS  Google Scholar 

  17. H. Sarrazin, J.-P. Vigneron, Phys. Rev. E 68, 016603 (2003)

    Article  ADS  Google Scholar 

  18. L. Martín-Moreno, F. García-Vidal, Opt. Express 12, 3619 (2004)

    Article  ADS  Google Scholar 

  19. J.B. Pendry, L. Martín-Moreno, F. García-Vidal, Sci. Express 10, 1126 (2004)

    Google Scholar 

  20. M. Treacy, Phys. Rev. B 66, 195105 (2002)

    Article  ADS  Google Scholar 

  21. F. García-Vidal, H. Lezec, T. Ebbesen, L. Martín-Moreno, Phys. Rev. Lett. 90, 213901 (2003)

    Article  ADS  Google Scholar 

  22. A. Dogariu, T. Thio, L. Wang, T. Ebbesen, H. Lezec, Opt. Lett. 26, 450 (2001)

    Article  ADS  Google Scholar 

  23. A. Degiron, T. Ebbesen, J. Opt. A 7, S90 (2005)

    Article  ADS  Google Scholar 

  24. S.-H. Chang, S.K. Gray, G.C. Schatz, Opt. Express 13, 3150 (2005)

    Article  ADS  Google Scholar 

  25. R. Gordon, A. Brolo, A. McKinnon, A. Rajora, B. Leathem, K. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004)

    Article  ADS  Google Scholar 

  26. K.J.K. Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004)

    Article  ADS  Google Scholar 

  27. H. Cao, A. Nahata, Opt. Express 12, 3664 (2004)

    Article  ADS  Google Scholar 

  28. K.L. van der Molen, K.J.K. Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Phys. Rev. B 72, 045421 (2005)

    Article  ADS  Google Scholar 

  29. X. Shi, L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002)

    Article  ADS  Google Scholar 

  30. K. Tanaka, M. Tanaka, J. Microsc. 210, 294 (2002)

    Article  Google Scholar 

  31. K. Sendur, W. Challener, J. Microsc. 210, 279 (2002)

    Article  Google Scholar 

  32. A.V. Itagi, D.D. Stancil, J.A. Bain, T.E. Schlesinger, Appl. Phys. Lett. 83, 4474 (2003)

    Article  ADS  Google Scholar 

  33. E.X. Jin, X. Xu, Jpn. J. Appl. Phys. 1 43, 407 (2004)

    Article  Google Scholar 

  34. J. Matteo, D. Fromm, Y. Yuen, P. Schuck, W. Moerner, L. Hesselink, Appl. Phys. Lett. 85, 648 (2004)

    Article  ADS  Google Scholar 

  35. E.X. Jin, X. Xu, Appl. Phys. Lett. 86, 111106 (2005)

    Article  ADS  Google Scholar 

  36. J. Helszajn, Ridge Waveguides and Passive Microwave Components (IEE, London, 2000)

    Book  Google Scholar 

  37. E.X. Jin, X. Xu, Appl. Phys. Lett. 88, 153110 (2006)

    Article  ADS  Google Scholar 

  38. A. Degiron, H.J. Lezec, N. Yamamoto, T.W. Ebbesen, Opt. Commun. 239, 61 (2004)

    Article  ADS  Google Scholar 

  39. R. Gordon, A.G. Brolo, Opt. Express 13, 1933 (2005)

    Article  ADS  Google Scholar 

  40. S.A. Maier, P.G. Kik, H.A. Atwater, Appl. Phys. Lett. 81, 1714 (2002)

    Article  ADS  Google Scholar 

  41. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)

    Book  Google Scholar 

  42. K. Kunz, R. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, Boca Raton, FL, 1996)

  43. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966)

    Article  ADS  Google Scholar 

  44. Z.P. Liao, H.L. Wong, G.P. Yang, Y.F. Yuan, Sci. Sin. 28, 1063 (1984)

    Google Scholar 

  45. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  46. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 1996)

  47. K. Tanaka, M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003)

    Article  ADS  Google Scholar 

  48. B. Wang, G.P. Wang, Appl. Phys. Lett. 85, 3599 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xu.

Additional information

PACS

81.07.-b; 07.79.Fc; 71.36.+c; 78.66.Bz; 42.79.Gn; 42.79.Vb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, E., Xu, X. Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture. Appl. Phys. B 84, 3–9 (2006). https://doi.org/10.1007/s00340-006-2237-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2237-7

Navigation