Skip to main content
Log in

Plasmonic Tuning at Mid-Infrared Wavelengths by Composite Arrays of Graphene Ribbons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This work reports on a numerical simulation study regarding the systematic tuning of plasmonic resonance wavelength in the mid-infrared regime, by using composite arrays of graphene ribbons. On top of a glass substrate, a variety of composite arrays that consist of graphene ribbons are carefully designed. The layer numbers of the multi-layer graphene ribbons and the Fermi energy levels of the graphene are respectively varied, and the corresponding light transmittance is calculated in the mid-infrared wavelength range from 4 to 20 μm, via the finite difference time domain (FDTD) method. The results reveal that the plasmonic resonance wavelength associated with the graphene arrays can be tuned in the mid-infrared wavelength range by adjusting the parameters of the arrays. Based on the study, we suggest that the structure of the graphene composite arrays proposed in this work be implemented in the design for plasmonic tuning devices at mid-infrared wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stanley R (2012) Plasmonics in the mid-infrared. Nat Photonics 6:409–411

    Article  CAS  Google Scholar 

  2. Soref R (2010) Mid-infrared photonics in silicon and germanium. Nat Photonics 4:495–497

    Article  CAS  Google Scholar 

  3. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  4. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694

    Article  CAS  Google Scholar 

  5. Pala RA, Shimizu KT, Melosh NA, Brongersma MLA (2008) Nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8:1506–1510

    Article  CAS  Google Scholar 

  6. MacDonald KF, Samson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photonics 3:55–58

    Article  CAS  Google Scholar 

  7. Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett 9:897–902

    Article  CAS  Google Scholar 

  8. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang XA (2011) Graphene-based broadband optical modulator. Nature 474:64–67

    Article  CAS  Google Scholar 

  9. Bludov YV, Vasilevskiy MI, Peres NMR (2010) Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene. Europhys Lett 92:68001

    Article  Google Scholar 

  10. Gan CH, Chu HS, Li EP (2012) Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys Rev B 85:125431

    Article  Google Scholar 

  11. Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334

    Article  CAS  Google Scholar 

  12. Liu P, Cai W, Wang L, Zhang X, Xu J (2012) Tunable terahertz optical antennas based on graphene ring structures. Appl Phys Lett 100:153111

    Article  Google Scholar 

  13. Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435

    Article  Google Scholar 

  14. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806–7813

    Article  CAS  Google Scholar 

  15. Ju L, Geng BS, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang XG, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634

    Article  CAS  Google Scholar 

  16. FDTD Solutions, www.lumerical.com

  17. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302

    Article  Google Scholar 

  18. Stauber T, Peres NMR, Guinea F (2007) Electronic transport in graphene: a semiclassical approach including midgap states. Phys Rev B 76:205423

    Article  Google Scholar 

  19. Tan YW, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang EH, Sarma SD, Stormer HL, Kim P (2007) Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett 99:246803

    Article  Google Scholar 

  20. Chu HS, Gan CH (2013) Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl Phys Lett 102:231107

    Article  Google Scholar 

  21. Gusynin VP, Sharapov SG, Carbotte JP (2007) Sum rules for the optical and Hall conductivity in graphene. Phys Rev B 75:165407

    Article  Google Scholar 

  22. Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov KS, Ferrari AC (2007) Rayleigh imaging of graphene and graphene layers. Nano Lett 7:2711–2717

    Article  CAS  Google Scholar 

  23. Li HJ, Zhai X, Sun B, Huang ZR, Wang LL (2015) A graphene-based bandwidth-tunable mid-infrared ultra-broadband plasmonic filter. Plasmonics 10:765–771

    Article  CAS  Google Scholar 

  24. Kim M, Lee S, Kim S (2015) Plasmon-induced transparency in coupled graphene gratings. Plasmonics 10:1557–1564

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Wang, X. Plasmonic Tuning at Mid-Infrared Wavelengths by Composite Arrays of Graphene Ribbons. Plasmonics 12, 1235–1243 (2017). https://doi.org/10.1007/s11468-016-0381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0381-4

Keywords

Navigation