Skip to main content
Log in

Plasmon-Induced Transparency in Coupled Graphene Gratings

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Wavelength-tunable plasmon-induced transparency (PIT) in coupled graphene gratings was theoretically investigated in mid-infrared region. Both direct and phase-coupled PITs were considered in the proposed structure. In both schemes, a proper wavelength detuning between two graphene gratings was required for PIT observations. The effect of graphene quality on the PIT was also investigated. Graphene quality of μ = 50,000 cm2/Vs was sufficient for achieving a distinct PIT peak while a weak PIT was observed for μ = 10,000 cm2/Vs. PIT peak amplitude modulation and tunability of operating wavelength were demonstrated by adjusting the Fermi level of graphene. Compared with previously studied graphene-based PITs, the proposed PIT based on the coupled graphene gratings is much easier to design and fabricate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boller KJ, Imamolu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593–2596

    Article  CAS  Google Scholar 

  2. Harris S, Hau L (1999) Nonlinear optics at low light levels. Phys Rev Lett 82(23):4611–4614

    Article  CAS  Google Scholar 

  3. Wu Y, Saldana J, Zhu Y (2003) Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys Rev A 67(1):013811

    Article  Google Scholar 

  4. Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720):594–598

    Article  CAS  Google Scholar 

  5. Krauss TF (2008) Why do we need slow light. Nat Photon 2(8):448–450

    Article  CAS  Google Scholar 

  6. Smith DD, Chang H, Fuller KA, Rosenberger AT, Boyd RW (2004) Coupled resonator induced transparency. Phys Rev A 69(6):063804

    Article  Google Scholar 

  7. Xu Q, Sandhu S, Povinelli ML, Shakya J, Fan S, Lipson M (2006) Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett 96(12):123901

    Article  Google Scholar 

  8. Song HY, Kim S, Magnusson R (2009) Tunable guided-mode resonances in coupled gratings. Opt Express 17(26):23544–23555

    Article  CAS  Google Scholar 

  9. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401

    Article  Google Scholar 

  10. Li Z, Ma Y, Huang R, Singh R, Gu J, Tian Z, Han J, Zhang W (2011) Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express 19(9):8912–8919

    Article  CAS  Google Scholar 

  11. Taubert R, Hentschel M, Kastel J, Giessen H (2012) Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett 12(3):1367–1371

    Article  CAS  Google Scholar 

  12. Liu X, Gu J, Singh R, Ma Y, Zhu J, Tian Z, He M, Han J, Zhang W (2012) Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl Phys Lett 100(13):131101

    Article  Google Scholar 

  13. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2009) Planar metamaterials analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103–1107

    Article  Google Scholar 

  14. Dong ZG, Liu H, Mu MX, Mu T, Wang SM, Zhu SN, Zhang X (2010) Plasmonically induced transparent magnetic resonance in a metallic metamaterials composed of asymmetric double bars. Opt Express 18(17):18229–18234

    Article  CAS  Google Scholar 

  15. Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia RA (2013) Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers. Nano Lett 13(12):6287–6291

    Article  CAS  Google Scholar 

  16. Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen HT, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151

    Article  Google Scholar 

  17. Zhang J, Xiao S, Jeppesen C, Kristensen A, Mortensen NA (2010) Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt Express 18(16):17187–17192

    Article  CAS  Google Scholar 

  18. Liu N, Langguth I, Weiss T, Kastel J, Flesichhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mat 8(9):758–762

    Article  CAS  Google Scholar 

  19. Xu H, Lu Y, Lee Y, Ham BS (2010) Studies of electromagnetically induced transparency in metamaterials. Opt Express 18(17):17736–17747

    Article  CAS  Google Scholar 

  20. R. D. Kekatpure, E. S. barnard, W. Cai, and M. L. Brongersma, Phase-coupled plasmon-induced transparency, Phys. Rev. Lett. 104(24), 243902 (2010).

  21. Han Z, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19(4):3251–3257

    Article  CAS  Google Scholar 

  22. Zhu Y, Hu X, Yang H, Gong Q (2014) On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci Rep 4:3752

    Google Scholar 

  23. Cheng H, Chen S, Yu P, Duan X, Xie B, Tian J (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 130(20):203112

    Article  Google Scholar 

  24. Shi X, Han D, Dai Y, Yu Z, Sun Y, Chen H, Liu X, Zi J (2013) Plasmonic analog of electromagnetically induced transparency in nanostructure graphene. Opt Express 21(23):28438–28443

    Article  Google Scholar 

  25. Ding J, Arigong B, Ren H, Zhou M, Shao J, Lu M, Chai Y, Lin Y, Zhang H (2014) Tunable complementary metamaterials structures based on graphene for single and multiple transparency windows. Sci Rep 4:6128

    Article  CAS  Google Scholar 

  26. Jablan M, Buljan H, Solijacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):245435

    Article  Google Scholar 

  27. Koppens FHL, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11(8):3370–3377

    Article  CAS  Google Scholar 

  28. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photon 6(11):749–758

    Article  CAS  Google Scholar 

  29. Ju N, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotech 6(10):630–643

    Article  CAS  Google Scholar 

  30. Nikitin AY, Guinea F, Garcia-Vidal FJ, Martin-Moreno L (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85(8):081405

    Article  Google Scholar 

  31. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  Google Scholar 

  32. Emani NK, Chung T-F, Ni X, Kildishev AV, Chen YP, Boltasseva A (2012) Electrically tunable damping of plasmonic resonances with graphene. Nano Lett 12(10):5202–5206

    Article  CAS  Google Scholar 

  33. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355

    Article  CAS  Google Scholar 

  34. Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos LM, Muller DA, Guo J, Kim P, Hone J, Shepard KL, Dean CR (2013) One-dimensional electrical contact to a two-dimensional material. Science 342(6158):614–617

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea grants (NRF-2014-R1A2A2A01006720, NRF-2009-0094046, and NRF-2015M3C1A3022539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Lee, S. & Kim, S. Plasmon-Induced Transparency in Coupled Graphene Gratings. Plasmonics 10, 1557–1564 (2015). https://doi.org/10.1007/s11468-015-9965-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9965-7

Keywords

Navigation