Skip to main content
Log in

The Effect of Inserted Gold Nanosphere on the Second Harmonic Generation (SHG) Enhancement Factor of Three-Layered Dielectric-Gold Nanoshell

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The tunable second harmonic generation (SHG) enhancement factor of gold-dielectric-gold three-layered nanoshells has been theoretically studied using the theory of quasi-static electrodynamics and plasmon hybridization. Because of the local surface plasmon resonance (LSPR)-induced local field effect, the SHG response corresponding to both fundamental frequency and second harmonic has been greatly enhanced. By changing the geometry parameters and local dielectric environment of the three-layered nanostructure, the intensity and shift of the SHG factor peaks could be fine tuned. As the radius of the inner gold sphere is increased, both the fundamental and the second harmonic SHG peaks from the anti-symmetric coupling between the outer bonding shell plasmon and the inner sphere plasmon decrease, whereas the SHG peaks from the symmetric coupling between the outer shell and the inner sphere get intense. These radius-dependent intensity changes of the SHG peaks also depend on the dielectric constant of the separate layer and outer surrounding. Thus, the number of SHG peak could be tuned from two to four. Furthermore, the wavelength gaps between the SHG peaks corresponding to anti-symmetric and symmetric coupling could be greatly reduced by increasing the thickness of the outer gold shell. Therefore, the nonmonotonous intensity change could be observed because of the switching of the SHG peaks. The corresponding physical origin has been illuminated by analyzing the plasmon hybridization and the polarization fields in the nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Biswas S, Liu X, Jarrett JW, Brown D, Pustovit V, Urbas A, Knappenberger KL Jr, Nealey PF, Vaia RA (2015) Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles. Nano Lett 15:1836–1842

    Article  CAS  Google Scholar 

  2. Zhang J, Cassan E, Zhang X (2014) Enhanced mid-to-near-infrared second harmonic generation in silicon plasmonic microring resonators with low pump power. Photon Res 2:143–149

    Article  Google Scholar 

  3. Knoppe S, Vanbel M, Cleuvenbergen S, Vanpraet L, Bürgi T, Verbiest T (2015) Nonlinear optical properties of thiolate-protected gold clusters. J Phys Chem C 119:6221–6226

    Article  CAS  Google Scholar 

  4. Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7:118–119

    Article  Google Scholar 

  5. Rodrigo SG, Laliena V, Martín-Moreno L (2015) Second-harmonic generation from metallic arrays of rectangular holes. J Opt Soc Am B 32:15–25

    Article  CAS  Google Scholar 

  6. Li K, Stockman MI, Bergman DJ (2005) Enhanced second harmonic generation in a self-similar chain of metal nanospheres. Phys Rev B 72:153401

    Article  Google Scholar 

  7. Kolkowski R, Szeszko J, Dwir B, Kapon E, Zyss J (2014) Effects of surface plasmon polariton-mediated interactions on second harmonic generation from assemblies of pyramidal metallic nanocavities. Opt Express 22:30592–30606

    Article  CAS  Google Scholar 

  8. Celebrano M, Wu X, Baselli M, Großmann S, Biagioni P, Locatelli A, De Angelis C, Cerullo G, Osellame R, Hecht B, Duò L, Ciccacci F, Finazzi M (2015) Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat Nanotechnol 10:412–417

    Article  CAS  Google Scholar 

  9. Zhu J (2007) Theoretical study of the tunable second-harmonic generation (SHG) enhancement factor of gold nanotubes. Nanotechnology 18:225702

    Article  Google Scholar 

  10. Lehr D, Reinhold J, Thiele I, Hartung H, Dietrich K, Menzel C, Pertsch T, Kley E, Tünnermann A (2015) Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett 15:1025–1030

    Article  CAS  Google Scholar 

  11. Czaplicki R, Mäkitalo J, Siikanen R, Husu H, Lehtolahti J, Kuittinen M, Kauranen M (2015) Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry. Nano Lett 15:530–534

    Article  CAS  Google Scholar 

  12. Kim MK, Sim H, Yoon SJ, Gong SH, Ahn CW, Cho YH, Lee YH (2015) Squeezing photons into a point-like space. Nano Lett 15:4102–4107

    Article  CAS  Google Scholar 

  13. Butet J, Russier-Antoine I, Jonin C, Lascoux N, Benichou E, Brevet PF (2012) Nonlinear Mie theory for the second harmonic generation in metallic nanoshells. J Opt Soc Am B 29:2213–2221

    Article  CAS  Google Scholar 

  14. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383

    Article  CAS  Google Scholar 

  15. Qian J, Li Y, Chen J, Xu J, Sun Q (2014) Localized hybrid plasmon modes reversion in gold–silica–gold multilayer nanoshells. J Phys Chem C 118:8581–8587

    Article  CAS  Google Scholar 

  16. Zhu J, Li JJ, Zhao JW (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6:527–534

    Article  CAS  Google Scholar 

  17. Zhu J, Ren YJ, Zhao SM, Zhao JW (2012) The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell. Mater Chem Phys 133:1060–1065

    Article  CAS  Google Scholar 

  18. Priyam A, Idrisa NM, Zhang Y (2012) Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging. J Mater Chem 22:960–965

    Article  CAS  Google Scholar 

  19. Braun GB, Pallaoro A, Wu G, Missirlis D, Zasadzinski JA, Tirrell M, Reich NO (2009) Laser-activated gene silencing via gold nanoshell-siRNA conjugates. ACS Nano 3:2007–2015

    Article  CAS  Google Scholar 

  20. Xing TY, Zhu J, Li JJ, Zhao JW (2016) Morphology modification of gold nanoparticles from nanoshell to C-shape: improved surface enhanced Raman scattering. J Appl Phys 119:243104

    Article  Google Scholar 

  21. Lesuffleur A, Kumar LKS, Gordon R (2006) Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film. Appl Phys Lett 88:261104

    Article  Google Scholar 

  22. Benneman KH (1998) Nonlinear optics in metal. Clarendon, Oxford

    Google Scholar 

  23. Maier SA, Atwater HA (2005) Plasmons: localization and guiding of electromagnetic energy in metal/dielectric structure. J Appl Phys 98:011101

    Article  Google Scholar 

  24. Chen CK, de Castro ARB, Shen YR (1981) Surface-enhanced second-harmonic generation. Phys Rev Lett 46:145–148

    Article  CAS  Google Scholar 

  25. Prodan E, Radlo C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  26. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16:19579–19591

    Article  CAS  Google Scholar 

  27. Zhu J, Li JJ, Yuan L, Zhao JW (2012) Optimization of threelayered Au–Ag bimetallic nanoshells for triple-bands surface plasmon resonance. J Phys Chem C 116:11734–11740

    Article  CAS  Google Scholar 

  28. Zhu J (2009) Composition-dependent plasmon shift in Au-Ag alloy nanotubes: effect of local field distribution. J Phys Chem C 113:3164–3167

    Article  CAS  Google Scholar 

  29. Zhu J, Deng XC (2011) Improve the refractive index sensitivity of gold nanotube by reducing the restoring force of localized surface plasmon resonance. Sensors Actuators B Chem 155:843–847

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities under grant no. xjj2016060 and the National Natural Science Foundation of China under grant no. 11174232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Sm., Zhu, J. The Effect of Inserted Gold Nanosphere on the Second Harmonic Generation (SHG) Enhancement Factor of Three-Layered Dielectric-Gold Nanoshell. Plasmonics 12, 1153–1159 (2017). https://doi.org/10.1007/s11468-016-0370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0370-7

Keywords

Navigation