Skip to main content
Log in

Study of Light Extinction and Surface Plasmon Resonances of Metal Nanocluster: a Comparison Between Coated and Non-coated Nanogeometry

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We suggest a noble design of coated and non-coated nanospheroids to study the tunable behaviour of surface plasmon resonances with different physical environments. Incorporation of coated nanospheroids into the various dielectric media exhibits double dipole plasmonic resonance spectra, which are highly tunable in the visible to infrared regions of the electromagnetic spectrum. The tunability of double dipole peaks and its spectral width depend upon the shape anisotropy of the chosen nanogeometry (especially prolate- and oblate-shaped coated silver and gold nanospheroids). By changing the major and minor axes radii of the inner ellipsoid, there is gradual blue and red shifting in the surface plasmon resonance (SPR) peak position. It was accounted that for the prolate-shaped coated gold nanospheroid with inner radii a 1 = 10 nm and c 1 = 3.8 nm and outer radii a 2 = 16 nm and c 2 = 6.08 nm, two SPR peaks are found at wavelengths 615 and 826 nm. In addition, the tunability of SPR peaks and full width at half maximum (FWHM) value have also been discussed with surrounding media and it was found that the magnitude of the peak extinction is maximum for refractive index N = 2. With the selection of various optical constants of embedding media, the wide tunability of plasmonic resonance spectra that lies in the range of 400–1100 nm has been observed. We have also discussed the advantage of coated nanospheroids over non-coated nanospheroids in the context of tunability of the SPR peak as well as the number of photons absorbed inside the thin-film wafer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Green MA (2004) Sol Energy 76:3

    Article  CAS  Google Scholar 

  2. Polman A et al (2012) J Opt 14:024002

    Article  Google Scholar 

  3. Mokkapati S, Catchpole KR (2012) J Appl Phys 112:101101

    Article  Google Scholar 

  4. Ji A, Raziman TV, Butet J, Sharma RP, Martin OJF (2013) Opt Express 21:21500–21507

    Article  Google Scholar 

  5. Pillai S, Catchpole KR, Trupke T, Green MA (2007) J Appl Phys 101:093105

    Article  Google Scholar 

  6. Atwater HA, Polman A (2010) Nat Mater 9:205

    Article  CAS  Google Scholar 

  7. Prasad PN (2012) Introduction to nanomedicine and nanobioengineering. Wiley

  8. Aslan K, Lakowicz JR, Geddes CD (2005) Curr Opin Chem Biol Analyt Tech 9:538

    Article  CAS  Google Scholar 

  9. Aslan K, Lakowicz JR, Geddes CD (2004) Anal Chim Acta 517:139

    Article  CAS  Google Scholar 

  10. Thouti E, Chander N, Dutta V, Komarala VK (2013) J Opt 15:035005

    Article  Google Scholar 

  11. Hutter E, Fendler JH (2004) Adv Mater 16:1685

    Article  CAS  Google Scholar 

  12. Catchpole KR, Polman A (2008) Opt Express 6:21793

    Article  Google Scholar 

  13. Pathak H, Ji A, Sharma R, Sharma RP (2015) Plasmonics. doi:10.1007/s11468-014-9865-2

    Google Scholar 

  14. Zhang Q, Large N, Nordlander P, Wang H (2014) J Phys Chem 5:370

    CAS  Google Scholar 

  15. Felidj N, Grand J, Laurent G, Aubard J, Levi G, Hohenau A, Galler N, Aussenegg FR, Krenn JR (2008) 128:094702

  16. Palik ED (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  17. Maier S (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  18. Cohen B, Martin C, Iyer SK, Wiesner U, Douhal A (2012) Chem Mater 24:361

    Article  CAS  Google Scholar 

  19. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  20. Hu L, Chen X, Chen G (2008) J Comput Theor Nanosci 5:2096

    Article  CAS  Google Scholar 

  21. Noguez C (2007) J Phys Chem C 111:3806

    Article  CAS  Google Scholar 

  22. Pathak NK, Ji A, Sharma RP (2014) Appl Phys A 115:1445–1450

    Article  CAS  Google Scholar 

  23. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  24. Hohenau A, Drezet A, Weissenbacher M, Aussenegg FR, Krenn JR (2008) Phys Rev B 78:155405

    Article  Google Scholar 

  25. AM1.5 Spectra, American Society for Testing and http://rredc.nreal.gov/solar/spectra/am1.5/

  26. Shockley W, Queisser H (1961) J Appl Phys 32:510

    Article  CAS  Google Scholar 

  27. Green MA, Keevers MJ (1995) Prog Photovolt Res Appl 3:189

    Article  CAS  Google Scholar 

  28. Gabudean AM et al (2011) Opt Mater 33:1377

    Article  CAS  Google Scholar 

  29. Viste A et al (2010) ACS Nano 4:759

    Article  CAS  Google Scholar 

  30. Temple TL, Bagnall DM (2013) Prog Photovolt Res Appl 21:600

    CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by MNRE India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh Kumar Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, N.K., Pandey, G.K., Ji, A. et al. Study of Light Extinction and Surface Plasmon Resonances of Metal Nanocluster: a Comparison Between Coated and Non-coated Nanogeometry. Plasmonics 10, 1597–1606 (2015). https://doi.org/10.1007/s11468-015-9978-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9978-2

Keywords

Navigation