Skip to main content
Log in

Forming Sub-32-nm High-Aspect Plasmonic Spot via Bowtie Aperture Combined with Metal-Insulator-Metal Scheme

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We theoretically utilize bowtie aperture combined with metal-insulator-metal (MIM) scheme to obtain sub-32-nm (λ/12) high-aspect plasmonic spots. The improvement of the depth profile is attributed to the asymmetry electromagnetic mode excitation in MIM structure and the decaying compensation of the reflective Ag layer. A theoretical near-field exposure model has been used to evaluate the exposure depth in the photoresist. It is demonstrated that the exposure depth of the sub-32-nm plasmonic spot is more than 20 nm, which is about four times of the bowtie aperture without MIM scheme. The influences of the air gap tolerance and the ridge gap size of bowtie aperture are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sendur K, Challener W (2003) Near-field radiation of bow-tie antennas and apertures at optical frequencies. J Microsc 210:279–283

    Article  CAS  Google Scholar 

  2. Jin EX, Xu X (2006) Enhanced optical near field from a bowtie aperture. Appl Phys Lett 88:153110

    Article  Google Scholar 

  3. Wang L, Uppuluri SMV, Jin EX, Xu X (2006) Nanolithography using high transmission nanoscale bowtie apertures. Nano Lett 6:361–364

    Article  CAS  Google Scholar 

  4. Rao Z, Hesselink L, Harris JS (2007) High-intensity bowtie-shaped nano-aperture vertical-cavity surface emitting laser for near-field optics. Opt Lett 32:1995–1997

    Article  Google Scholar 

  5. Wang L, Xu X (2007) High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Appl Phys Lett 90:261105

    Article  Google Scholar 

  6. Murphy-DuBay N, Wang L, Kinzel EC, Uppuluri SMV, Xu X (2008) Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture. Opt Express 16:2584–2589

    Article  Google Scholar 

  7. Uppuluri SMV, Kinzel EC, Li Y, Xu X (2010) Parallel optical nanolithography using nanoscale bowtie aperture array. Opt Express 18:7369–7375

    Article  CAS  Google Scholar 

  8. Guo R, Kinzel EC, Li Y, Uppuluri SMV, Raman A, Xu X (2010) Three-dimensional mapping of optical near field of a nanoscale bowtie antenna. Opt Express 18:4961–4971

    Article  CAS  Google Scholar 

  9. Srituravanich W, Pan L, Wang Y, Sun C, Bogy DB, Zhang X (2008) Flying plasmonic lens in the near field for high-speed nanolithography. Nat Nanotechnol 3:733–737

    Article  CAS  Google Scholar 

  10. Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy DB, Zhang X (2011) Maskless plasmonic lithography at 22 nm resolution. Sci Rep 1(175):1–6

    Google Scholar 

  11. Kim Y, Kim S, Jung H, Lee E, Hahn JW (2009) Plasmonic nanolithography with a high scan speed contact probe. Opt Express 17:19476–19485

    Article  CAS  Google Scholar 

  12. Kim S, Jung H, Kim Y, Jang J, Hahn JW (2012) Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch. Adv Mater 24:OP337–344

    CAS  Google Scholar 

  13. Srisungsitthisunti P, Ersoy OK, Xu X (2011) Improving near-field confinement of a bowtie aperture using surface plasmon polaritons. Appl Phys Lett 98:223106

    Article  Google Scholar 

  14. Xu T, Fang L, Ma J, Zeng B, Liu Y, Cui J, Wang C, Feng Q, Luo X (2009) Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl Phys B 97:175–179

    Article  CAS  Google Scholar 

  15. Wang C, Gao P, Zhao Z, Yao N, Wang Y, Liu L, Liu K, Luo X (2013) Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt Express 21:20683–20691

    Article  Google Scholar 

  16. Palik ED (ed) (1985) The handbook of optical constants of solids. Academic, New York

    Google Scholar 

  17. Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible. Nano Lett 4:957–961

    Article  CAS  Google Scholar 

  18. Wang L, Xu X (2007) Spectral resonance of nanoscale bowtie apertures in visible wavelength. App Phys A 89:293–297

    Article  CAS  Google Scholar 

  19. Guo H, Meyrath TP, Zentgraf T, Liu N, Fu L, Schweizer H, Giessen H (2008) Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt Express 16:7756–7766

    Article  Google Scholar 

  20. Moharam MG, Gaylord TK (1981) Rigorous coupled-wave analysis of planar grating diffraction. J Opt Soc Am 71:811–818

    Article  Google Scholar 

  21. Huang Q, Wang C, Yao N, Zhao Z, Wang Y, Gao P, Luo Y, Zhang W, Wang H, Luo X (2014) Improving imaging contrast of non-contacted plasmonic lens by off-axis illumination with high numerical aperture. Plasmonics 9:699–706

    Article  Google Scholar 

  22. Zhang W, Yao N, Wang C, Zhao Z, Wang Y, Gao P, Luo X (2014) Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography. Plasmonics 9:1333–1339

    Article  Google Scholar 

  23. Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X (2015) Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl Phys Lett 106:093110

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by 973 Program of China (No. 2013CBA01700) and National Natural Science Funds (Nos. 61138002 and 61177013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yao, N., Zhang, W. et al. Forming Sub-32-nm High-Aspect Plasmonic Spot via Bowtie Aperture Combined with Metal-Insulator-Metal Scheme. Plasmonics 10, 1607–1613 (2015). https://doi.org/10.1007/s11468-015-9966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9966-6

Keywords

Navigation