Skip to main content
Log in

Characterizing the Optical Response of Symmetric Hemispherical Nano-dimers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present the first comprehensive study of a hemispherical nano-dimer interacting with an optical field. We characterize the optical response of the hemispherical dimer numerically using the finite-element method. The qualitative insight gained through the numerical analysis is enhanced with a derivation of an analytical approximation for the polarizability of a symmetric hemispherical dimer by invoking the dipole-dipole approximation. The results explain the effects of inter-particle spacing and the polarization of external excitation on the extinction spectra. Considering three configurations of hemispherical dimers, we show that both the frequency and the strength of plasmon resonances in each configuration are highly dependent on the inter-particle distance and the state of polarization of the incident light. We also show that, in the case of longitudinal polarization and an edge-to-edge orientation, the hemispherical dimer provides much better near-field confinement and produces much more enhancement of the electric field than a spherical dimer of the same volume. This result should prove useful for sensing and SERS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer

  2. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  Google Scholar 

  3. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biomed Opt express 4(1):15–31

    Article  CAS  Google Scholar 

  4. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648

    Article  CAS  Google Scholar 

  5. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118

    Article  CAS  Google Scholar 

  6. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres. J Opt Soc Am B 30(8):2066–2074

    Article  CAS  Google Scholar 

  7. Kumarasinghe C, Premaratne M, Agrawal GP (2014) Dielectric function of spherical dome shells with quantum size effects. Opt Express 22(10):11966–11984

    Article  Google Scholar 

  8. Nordlander P, Oubre C, Prodan E, Li K, Stockman M (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    Article  CAS  Google Scholar 

  9. Bao K, Mirin NA, Nordlander P (2010) Fano resonances in planar silver nanosphere clusters. Appl Phys A 100(2):333–339

    Article  CAS  Google Scholar 

  10. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16(10):1824–1832

    Article  CAS  Google Scholar 

  11. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2014) Tunable broadband optical responses of substrate-supported metal/dielectric/metal nanospheres. Plasmonics 9(3):659–672

    Article  CAS  Google Scholar 

  12. Ljungbert A, Lundqvist S (1985) Non-local effects in the optical absorption of small metallic particles. Surf Sci 156:839–844

    Article  CAS  Google Scholar 

  13. Chang R, Leung P (2006) Nonlocal effects on optical and molecular interactions with metallic nanoshells. Phys Rev B 73(12):125438–125444

    Article  Google Scholar 

  14. David C, Garcia de Abajo FJ (2011) Spatial nonlocality in the optical response of metal nanoparticles. J Phys Chem C 115(40):19470–19475

    Article  CAS  Google Scholar 

  15. Prodan E, Radloff C, Halas N, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  16. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253

    Article  CAS  Google Scholar 

  17. Fischer J, Vogel N, Mohammadi R, Butt HJ, Landfester K, Weiss CK, Kreiter M (2011) Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances. Nanoscale 3(11):4788–4797

    Article  CAS  Google Scholar 

  18. Guerrero-Martínez A, Alonso-Gómez JL, Auguié B, Cid MM, Liz-Marzán LM (2011) From individual to collective chirality in metal nanoparticles. Nano Today 6(4):381–400

    Article  Google Scholar 

  19. Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41(12):1710–1720

    Article  CAS  Google Scholar 

  20. Oubre C, Nordlander P (2005) Finite-difference time-domain studies of the optical properties of nanoshell dimers. J Phys Chem B 109(20):10042–10051

    Article  CAS  Google Scholar 

  21. Zhu S, Zhou W, Park GH, Li E (2010) Numerical design methods of nanostructure array for nanobiosensing. Plasmonics 5(3):267–271

    Article  CAS  Google Scholar 

  22. Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 5(1):85–97

    Article  CAS  Google Scholar 

  23. Aizpurua J, Rivacoba A, Apell S (1996) Electron-energy losses in hemispherical targets. Phys Rev B 54 (4):2901–2909

    Article  CAS  Google Scholar 

  24. Kettunen H, Wallén H, Sihvola A (2007) Polarizability of a dielectric hemisphere. J Appl Phys 102(4):044105–044112

    Article  Google Scholar 

  25. Morse PM, Feshbach H (1953) Methods of theoretical physics

  26. Kettunen H, Wallén H, Sihvola A (2008) Electrostatic resonances of a negative-permittivity hemisphere. J Appl Phys 103(9):094112–094120

    Article  Google Scholar 

  27. Mayergoyz ID, Fredkin DR, Zhang Z (2005) Electrostatic (plasmon) resonances in nanoparticles. Phys Rev B 72(15):155412

    Article  Google Scholar 

  28. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487(4):153–164

    Article  CAS  Google Scholar 

  29. Sheikholeslami S, Jun Yw, Jain PK, Alivisatos AP (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10(7):2655–2660

    Article  CAS  Google Scholar 

  30. Gomez D, Vernon K, Davis T (2010) Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures. Phys Rev B 81(7):075414

    Article  Google Scholar 

  31. Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107(26):6269–6275

    Article  CAS  Google Scholar 

  32. Weiland T, Timm M, Munteanu I (2008) A practical guide to 3-d simulation. IEEE Microw Mag 9(6):62–75

    Article  Google Scholar 

  33. Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic

  34. Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. Wiley

  35. Esteban R, Borisov AG, Nordlander P, Aizpurua J (2012) Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun 3:825

  36. Hatab NA, Hsueh CH, Gaddis AL, Retterer ST, Li JH, Eres G, Zhang Z, Gu B (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced raman spectroscopy. Nano Lett 10(12):4952–4955

    Article  CAS  Google Scholar 

  37. Encina ER, Coronado EA (2010) Plasmon coupling in silver nanosphere pairs. J Phys Chem C 114(9):3918–3923

    Article  CAS  Google Scholar 

  38. Brandl DW, Oubre C, Nordlander P (2005) Plasmon hybridization in nanoshell dimers. J Chem Phys 123(2):024,701

    Article  Google Scholar 

  39. Rechberger W, Hohenau A, Leitner A, Krenn J, Lamprecht B, Aussenegg F (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220(1):137–141

    Article  CAS  Google Scholar 

  40. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    Article  CAS  Google Scholar 

  41. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’S disease. Nano Lett 4(6):1029– 1034

    Article  CAS  Google Scholar 

  42. Unger A, Kreiter M (2009) Analyzing the performance of plasmonic resonators for dielectric sensing. J Phys Chem C 113(28):12,243–12,251

    Article  CAS  Google Scholar 

  43. Haynes CL, McFarland AD, Duyne RPV (2005) Surface-enhanced raman spectroscopy. Anal Chem 77(17):338

    Article  Google Scholar 

  44. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates. Nano Lett 5(8):1569–1574

    Article  CAS  Google Scholar 

  45. Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124

    Article  CAS  Google Scholar 

  46. Sarid D, Challener W (2010) Modern introduction to surface plasmons: theory, Mathematica modeling, and applications. Cambridge University Press

  47. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366

    Article  CAS  Google Scholar 

  48. Raziman T, Martin OJ (2013) Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures. Opt Express 21(18):21,500–21,507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of M. Premaratne and G. P. Agrawal is supported by the Australian Research Council through its Discovery Grants DP110100713 and DP140100883. T. Attanayake gratefully acknowledges financial support from Australian government and the Faculty of Engineering, Monash University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Attanayake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attanayake, T., Premaratne, M. & Agrawal, G.P. Characterizing the Optical Response of Symmetric Hemispherical Nano-dimers. Plasmonics 10, 1453–1466 (2015). https://doi.org/10.1007/s11468-015-9946-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9946-x

Keywords

Navigation