Skip to main content
Log in

Scattering of a Single Plasmon by Two-Level and V-Type Three-Level Quantum Dot Systems Coupled to 1D Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Scattering properties of a single plasmon interacting with three non-equally spaced two-level quantum dots (QDs) and a V-type three-level QD, coupled to 1D surface plasmonic waveguide, respectively, are investigated theoretically via the real-space approach. It is demonstrated that the transmission and reflection of a single plasmon can be switched on or off by controlling the detuning and changing the interparticle distances between the QDs. By controlling the transition frequencies and interparticle distances of QDs, one can construct a half-transmitting mirror with a three-QD system. We also showed that the transmission spectra of a single plasmon interacting with a two-level QD and a V-type three-level QD are quite the same as those with three two-level QDs when the spacing between the two-level QD and the V-type three-level QD is equal to the spacing between two-level QDs in the three two-level QD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raimond JM, Brune M, Haroche S (2001) Rev Mod Phys 73:565

    Article  Google Scholar 

  2. Wallraff A, Schuster DI, Blais A, Frunzio L, Huang R-S, Majer J, Kumar S, Girvin SM, Schoelkopf RJ (2004) Nature 431:162

    Article  CAS  Google Scholar 

  3. Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ (2007) Rev Mod Phys 79:135

    Article  CAS  Google Scholar 

  4. Chang DE, Sørensen AS, Demler EA, Lukin MD (2007) Nat Phys 3:807

    Article  CAS  Google Scholar 

  5. Shen J-T, Fan S (2005) Opt Lett 30:2001

    Article  CAS  Google Scholar 

  6. Shen J-T, Fan S (2005) Phys Rev Lett 95:213001

    Article  Google Scholar 

  7. Shen J-T, Fan S (2009) Phys Rev A 79:023837

    Article  Google Scholar 

  8. Bradford M, Shen J-T (2012) Phys Rev A 85:043814

    Article  Google Scholar 

  9. Gong ZR, Ian H, Zhou L, Sun CP (2008) Phys Rev A 78:053806

    Article  Google Scholar 

  10. Shen J-T, Fan S (2009) Phys Rev A 79:023838

    Article  Google Scholar 

  11. Rostami G, Shahabadi M, Kusha A, Rostami A (2012) Appl Opt 51:5019

    Article  Google Scholar 

  12. Cheng M-T, Luo Y-Q, Wang P-Z, Zhao G-X (2010) Appl Phys Lett 97:191903

    Article  Google Scholar 

  13. Shen YC, Shen J-T (2012) Phys Rev A 85:013801

    Article  Google Scholar 

  14. Cheng M-T, Ma X-S, Ding M-T, Luo Y-Q, Zhao G-X (2012) Phys Rev A 85:053840

    Article  Google Scholar 

  15. Neumeier L, Leib M, Hartmann MJ (2013) Phys Rev Lett 111:063601

    Article  Google Scholar 

  16. Dayan B, Parkins AS, Aoki T, Ostby EP, Vahala KJ, Kimble HJ (2008) Science 319:1062

    Article  CAS  Google Scholar 

  17. Aoki T, Dayan B, Wilcut E, Bowen WP, Parkins AS, Kippenberg TJ, Vahala KJ, Kimble HJ (2006) Nature 443:671

    Article  CAS  Google Scholar 

  18. Birnbaum KM, Boca A, Miller R, Boozer AD, Northup TE, Kimble HJ (2005) Nature 436:87

    Article  CAS  Google Scholar 

  19. Zhou L, Gong ZR, Liu YX, Sun CP, Nori F (2008) Phys Rev Lett 101:100501

    Article  Google Scholar 

  20. Tsoi TS, Law CK (2009) Phys Rev A 80:033823

    Article  Google Scholar 

  21. Kim N-C, Li J-B, Yang Z-J, Hao Z-H, Wang Q-Q (2010) Appl Phys Lett 97:061110

    Article  Google Scholar 

  22. Kim N-C, Ko M-C (2014) Plasmonics (Springer) 9:9845

    Google Scholar 

  23. Chen W, Chen G-Y, Chen Y-N (2010) Opt Express 18:10360

    Article  CAS  Google Scholar 

  24. Kim N-C, Ko M-C, Wang Q-Q (2014) Plasmonics (Springer) 9:9846

    Google Scholar 

  25. Wei H, Xu H-X (2013) Nanophotonics 2:155–169

    Google Scholar 

  26. Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2006) Phys Rev Lett 97:053002

    Article  CAS  Google Scholar 

  27. Gong HM, Zhou L, Su XR, Xiao S, Liu SD, Wang QQ (2009) Adv Funct Mater 19:298

    Article  CAS  Google Scholar 

  28. Yang Z-J, Kim N-C, Li J-B, Cheng M-T, Liu S-D, Hao Z-H, Wang Q-Q (2010) Opt Express 18:4006

    Article  CAS  Google Scholar 

  29. Wei H, Ratchford D, Li X, Xu HX, Shih CK (2009) Nano Lett 9:4168

    Article  CAS  Google Scholar 

  30. Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Nature (London) 450:402

    Article  CAS  Google Scholar 

  31. Li Q, Wei H, Xu H (2014) Nano Lett 14:3358–3363

    Article  CAS  Google Scholar 

  32. Schell AW, Kaschke J, Fischer J, Henze R, Wolters J, Wegener M, Benson O (2013) Sci Rep 3:1577

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Program on Key Science Research and Key Project for Frontier Research on Quantum Information and Quantum Optics of Ministry of Education of Democratic People’s Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Chol Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NC., Ko, MC. & Choe, CI. Scattering of a Single Plasmon by Two-Level and V-Type Three-Level Quantum Dot Systems Coupled to 1D Waveguide. Plasmonics 10, 1447–1452 (2015). https://doi.org/10.1007/s11468-015-9944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9944-z

Keywords

Navigation