Skip to main content
Log in

Coulomb Gap and Metal–Insulator–Semiconductor (MIS) Transition in ZnO/n-Ag/ZnO Film in the Plasmonic Domain

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver nanoparticles were incorporated in between zinc oxide layers to realize ZnO/n-Ag/ZnO sandwich structure. Particle size and volume fraction of nanocrystalline silver particles were optimized to obtain a layer exhibiting a strong plasmonic peak even when embedded in ZnO sandwich structure. Strong surface plasmon resonance peak in the optical absorbance spectra was observed at ∼480 nm. Electrical conductivity in the temperature range of 10–200 K in the dark and when illuminated at 480 nm was studied to understand the transport processes associated with this material. The effect of surface plasmon resonance on the electron transport process was also specifically addressed in the metal–insulator–semiconductor (MIS) transition domain. The effect of additional density of states in the higher energy domain on the surface plasmon peak has been discussed and resulting broadening of the coulomb gap has been explained. Both the hopping energy (W OPT) and width of coulomb gap (Δ ES) increased in the plasmonic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miranda E, Dobrosavljević V (2005) Disorder-driven non-Fermi liquid behaviour of correlated electrons. Rep Prog Phys 68:2337–2408

    Article  CAS  Google Scholar 

  2. Qazilbash MM, Brehm M, Chae BG, Ho PC, Andreev GO, Kim BJ, Yun SJ, Balastsky AV, Maple MB, Keilmann F, Kim HT, Basov DN (2007) Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318:1750–1753

    Article  CAS  Google Scholar 

  3. Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C, Hanaguri T, Azuma M, Takano M, Eisaki H, Takagi H, Uchida S, Davis JC (2007) An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315:1380–1385

    Article  CAS  Google Scholar 

  4. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  5. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105–093108

    Article  Google Scholar 

  6. Polman A (2008) Plasmonics applied. Science 322:868–869

    Article  Google Scholar 

  7. Pudasaini PR, Ayon AA (2012) Nanostructured thin film silicon solar cells efficiency improvement using gold nanoparticles. Phys Status Solidi A 209:1475–1480

    Article  CAS  Google Scholar 

  8. Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113

    Article  CAS  Google Scholar 

  9. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800

    Article  CAS  Google Scholar 

  10. Ghosh B, Ghosh D, Hussain S, Chakraborty BR, Sehgal G, Bhar R, Pal AK (2014) Inclusion of nano-Ag plasmonic layer enhancing the performance of p-Si/CdS solar cells. Phys Status Solidi A 211:890–900

    Article  CAS  Google Scholar 

  11. Sagar P, Kumar M, Mehra R (2008) The Meyer–Neldel rule in sol–gel derived polycrystalline ZnO:Al thin films. Solid State Commun 147:465–469

    Article  CAS  Google Scholar 

  12. Brilis N, Tsamakis D, Ali H, Krishnamoorthy S, Iliadis A (2008) Electrical conduction effects at low temperatures in undoped ZnO thin films grown by pulsed laser deposition on Si substrates. Thin Solid Films 516:4226–4231

    Article  CAS  Google Scholar 

  13. Bandyopadhyay S, Paul G, Roy R, Sen S, Sen S (2002) Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique. Mater Chem Phys 74:83–91

    Article  CAS  Google Scholar 

  14. Liu H, Qiu H, Chen X, Yu M, Wang M (2009) Structural and physical properties of ZnO:Al films grown on glass by direct current magnetron sputtering with the oblique target. Curr Appl Phys 9:1217–1222

    Article  Google Scholar 

  15. Mott NF (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Solids 1:1–17

    Article  CAS  Google Scholar 

  16. Mott NF (1969) Conduction in non-crystalline materials III localized states in a pseudogap and near extremities of conduction and valence bands. Philos Mag 19:835–852

    Article  CAS  Google Scholar 

  17. Heluani S, Braunstein G, Villafuerte M, Simonelli G, Duhalde S (2006) Electrical conductivity mechanisms in zinc oxide thin films deposited by pulsed laser deposition using different growth environments. Thin Solid Films 515:2379–2386

    Article  CAS  Google Scholar 

  18. Limelette P, Wzietek P, Florens S, Georges A, Costi TA, Pasquier C, Jerome D, Mézière C, Batail P (2003) Mott transition and transport crossovers in the organic compound k-(BEDT-TTF)2 Cu[N(CN)2]Cl. Phys Rev Lett 91:016401-(1-4)

    Article  Google Scholar 

  19. Liau ZL, Tsaur BY, Mayer JW (1979) Influence of atomic mixing and preferential sputtering on depth profiles and interfaces. J Vac Sci Technol 16:121–127

    Article  CAS  Google Scholar 

  20. Ghosh D, Ghosh B, Bhunia R, Das S, Hussain S, Bhar R, Pal AK (2014) Electron transport in the plasmonic regime: silver nanoparticles in ZnO matrix. Phys Status Solidi B. doi:10.1002/pssb.201451467

    Google Scholar 

  21. Demichelis F, Pirri CF, Tresso E (1993) Degree of crystallinity and electrical transport properties of microcrystalline silicon-carbon alloys. Philos Mag B 67:331–346

    Article  CAS  Google Scholar 

  22. Efros AL, Shklovskii BI (1975) Coulomb gap and low temperature conductivity of disordered systems. J Phys C Solid State Phys 8:L49–L51

    Article  CAS  Google Scholar 

  23. Efros AL, Shklovskii BI (1984) Electronic properties of doped semiconductors. Springers, Berlin

    Google Scholar 

  24. Entin-Wohlman O, Gefen Y, Shapira Y (1983) Variable-range hopping conductivity in granular materials. J Phys C Solid State Phys 16:1161–1167

    Article  CAS  Google Scholar 

  25. Rentzsch R, Ionov AN (2002) Correlated variable range hopping in doped GaAs, CdTe, Ge and Si. Phys Status Solidi B 230:183–187

    Article  CAS  Google Scholar 

  26. McKenzie RH (1997) Similarities between organic and cuprate superconductors. Science 278:820–821

    Article  CAS  Google Scholar 

  27. Merino J, McKenzie RH (2000) Transport properties of strongly correlated metals: a dynamical mean-field approach. Phys Rev B 61:7996–8008

    Article  CAS  Google Scholar 

  28. Neugebauer CA, Webb MB (1962) Electrical conduction mechanism in ultrathin, evaporated metal films. J Appl Phys 33:74–82

    Article  CAS  Google Scholar 

  29. Bera SK, Chaudhuri S, Gupta RP, Pal AK (2001) Electrical transport studies in nanocrystalline CdSe/SiO2 composite films. Thin Solid Films 382:86–94

    Article  CAS  Google Scholar 

  30. Pollak M (1992) The Coulomb gap: a review, and new developments. Philos Mag B 65:657–667

    Article  Google Scholar 

  31. Zabrodskii AG (2001) The Coulomb gap: the view of an experimenter. Philos Mag B 81:1131–1151

    Article  CAS  Google Scholar 

  32. Zabrodskii AG, Andreev AG, Egorov SV (1998) Coulomb gap and the metal–insulator transition. Phys Status Solidi B 205:61–68

    Article  CAS  Google Scholar 

  33. Zabrodskii AG (1977) Sov Phys Semicond 11:345

    Google Scholar 

  34. Zabrodskii AG (1980) Sov Phys Semicond 14:1130

    CAS  Google Scholar 

  35. Pollak M (1970) Effect of carrier-carrier interactions on some transport properties in disordered semiconductors. Discuss Faraday Soc 50:13–19

    Article  Google Scholar 

  36. Pollak M, Ortuno M (1985) In: Efros AL, Pollak M (eds) Electron-electron interactions in disordered systems, modern problems in condensed matter sciences, vol. 10. North-Holland, Amsterdam, pp 287–408

    Chapter  Google Scholar 

  37. Zabrodskii AG, Andreev AG (1993) Anomalously narrow Coulomb gap. JETP Lett 58:756–761

    Google Scholar 

  38. Zabrodskii AG, Andreev AG (1994) Proceedings of the 22nd International Conference on the Physics of Semiconductors. World Scientific, Singapore, p 2681

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Board of Research in Nuclear Sciences (BRNS), Government of India, for the financial assistance to carry out this research programme. RB wishes to thank the Jadavpur University for supporting his fellowship. The authors are thankful to Dr. M. K. Dalai and Mrs. G. Sehgal of CSIR-NPL, New Delhi, for their cooperation during the TOF-SIMS experiment. BRC would like to acknowledge the CSIR-HRDG, New Delhi, for supporting his Emeritus Scientist Project in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, R., Bhadra, N., Das, S. et al. Coulomb Gap and Metal–Insulator–Semiconductor (MIS) Transition in ZnO/n-Ag/ZnO Film in the Plasmonic Domain. Plasmonics 10, 1291–1300 (2015). https://doi.org/10.1007/s11468-015-9936-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9936-z

Keywords

Navigation