Skip to main content
Log in

Wide Band Gap Al and In Co-doped ZnO Films for Near-Infrared Plasmonic Application

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In transparent conducting oxide films, tuning of plasmonic resonance is directly controlled by free electron concentration and thus by activated dopants. In this study, large area AlxInyZn1-x-yO thin films at various concentrations were prepared by spray coating using water as a solvent. The effect of Al/In dopant ratio on the structural, electrical, optical, and plasmonic properties was investigated. Tuning of optical response to a well-defined plasmon resonance is correlated to the above properties of AlxInyZn1-x-yO films. Theoretical fitting based on the Drude-Lorentz (D-L) theory was utilized for extracting the dielectric spectra and cross-over wavelength (ωc). The studies revealed plasmonic properties in NIR for the films with Al/In ratios of A5I5, A2.5I7.5, and A0I10, indicating In as the most activated dopant. Surface plasmon mode simulated using the extracted permittivity values showed the influence of mobility of these films on the broadening of the dip. The minimum plasmonic loss suggests the suitability as an alternative plasmonic material in the near infrared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966

    Article  CAS  PubMed  Google Scholar 

  2. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  PubMed  Google Scholar 

  3. Kim H, Osofsky M, Prokes SM, Glembocki OJ, Pique A (2013) Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths. Appl Phys Lett 102:171103

    Article  CAS  Google Scholar 

  4. Limaj O, Etezadi D, Wittenberg NJ, Rodrigo D, Yoo D, Oh SH, Altug H (2016) Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Lett 16:1502–1508

    Article  CAS  PubMed  Google Scholar 

  5. Noginov MA, Gu L, Livenere J, Zhu G, Pradhan AK, Mundle R, Bahoura M, Barnakov YA, Podolskiy VA (2011) Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl Phys Lett 99:021101

    Article  CAS  Google Scholar 

  6. Soumya K, Selvam IP, Potty SN (2019) Study on the doping effect of spin coated Al and In doped and (Al/In) co-doped ZnO thin films for near-infrared plasmonic applications. Thin Solid Films 687:137482

    Article  CAS  Google Scholar 

  7. Ghosh S, Saha M, De SK (2014) Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals. Nanoscale 6:7039

    Article  CAS  PubMed  Google Scholar 

  8. Kirby SD, Van Dover RB (2009) Improved conductivity of ZnO through codoping with In and Al. Thin Solid Films 517:1958–1960

    Article  CAS  Google Scholar 

  9. Lin JY, Zhong KD, Lee PT (2016) Plasmonic behaviours of metallic AZO thin film and AZO nanodisk array. Opt Express 24:5125–5135

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Capretti A, Dal Negro L (2015) Wide tuning of the optical and structural properties of alternative plasmonic materials. Opt Mater Express 5:2415–2430

    Article  CAS  Google Scholar 

  11. Viarbitskaya S, Arocas J, Heintz O, Colas-Des-Francs G, Rusakov D, Koch U, Leuthold J, Markey L, Dereux A, Weeber JC (2018) Correlation between electrical direct current resistivity and plasmonic properties of CMOS compatible titanium nitride thin films. Opt Express 26:9813–9821

    Article  CAS  PubMed  Google Scholar 

  12. Santiago K, Mundle R, Samantaray CB, Bahoura M, Pradhan AK (2012) Nanopatterning of atomic layer deposited Al: ZnO films using electron beam lithography for waveguide applications in the NIR region. Opt Mater Express 2:1743–1750

    Article  CAS  Google Scholar 

  13. Muiva CM, Sathiaraj TS, Maabong K (2011) Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram Int 37:555–560

    Article  CAS  Google Scholar 

  14. Tolansky S (1948) Multiple Beam Interferometry of Surfaces and Films. Oxford Univ. Press, London and New York

    Google Scholar 

  15. Kumar V, Kumari S, Kumar P, Kar M, Kumar L (2015) Structural analysis by rietveld method and its correlation with optical properties of nanocrystalline zinc oxide. Adv Mater Lett 6:139–147

    Article  CAS  Google Scholar 

  16. Prabeesh P, Selvam IP, Potty SN (2018) Structural properties of CZTS thin films on glass and Mo coated glass substrates: a Rietveld refinement study. Appl Phys A 124:225

    Article  CAS  Google Scholar 

  17. Zak AK, Majid WA, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci 13:251–256

    Article  CAS  Google Scholar 

  18. Denton R, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43:3161

    Article  CAS  PubMed  Google Scholar 

  19. Edinger S, Bansal N, Bauch M, Wibowo RA, Ujvari G, Hamid R, Trimmel G, Dimopoulos T (2017) Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions. J Mater Sci 52:8591–8602

    Article  CAS  Google Scholar 

  20. Singh AV, Mehra RM, Yoshida A, Wakahara A (2004) Doping mechanism in aluminum doped zinc oxide films. J Appl Phys 95:3640–3643

    Article  CAS  Google Scholar 

  21. Nunes P, Fortunato E, Martins R (2001) Influence of the post-treatment on the properties of ZnO thin films. Thin Solid Films 383:277–280

    Article  CAS  Google Scholar 

  22. Chang JF, Lin WC, Hon MH (2001) Effects of post-annealing on the structure and properties of Al-doped zinc oxide films. Appl Surf Sci 183:18–25

    Article  CAS  Google Scholar 

  23. Karaagac H, Yengel E, Islam MS (2012) Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method. J Alloys Compd 521:155–162

    Article  CAS  Google Scholar 

  24. Mondal S, Kanta KP, Mitra P (2008) Preparation of Al-doped ZnO (AZO) thin film by SILAR. J Phys Sci 12:221–229

    Google Scholar 

  25. Ghimbeu CM, Schoonman J, Lumbreras M, Siadat M (2007) Electrostatic spray deposited zinc oxide films for gas sensor applications. Appl Surf Sci 253:7483–7489

    Article  CAS  Google Scholar 

  26. Chandrasekhar M, Renucci JB, Cardona M (1978) Effects of interband excitations on Raman phonons in heavily doped n-Si Phys. Rev B 17:1623

    Article  CAS  Google Scholar 

  27. Mohanta A, Simmons JG Jr, Shen G, Kim SM, Kung P, Everitt HO (2019) Al doping in ZnO nanowires enhances ultraviolet emission and suppresses broad defect emission. J Lumin 211:264–270

    Article  CAS  Google Scholar 

  28. Biroju RK, Tilak N, Rajender G, Dhara S, Giri PK (2015) Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse. Nanotechnology 26:145601

    Article  PubMed  CAS  Google Scholar 

  29. Makino T, Segawa Y, Yoshida S, Tsukazaki A, Ohtomo A, Kawasaki M (2004) Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO: Ga. Appl Phys Lett 85:759–761

    Article  CAS  Google Scholar 

  30. Schubert EF, Goepfert ID, Grieshaber W, Redwing JM (1997) Optical properties of Si-doped GaN. Appl Phys Lett 71:921–923

    Article  CAS  Google Scholar 

  31. Meljanac D, Juraic K, Mandic V, Skenderovic H, Bernstorff S, Plaisier JR, Santic A, Gajovic A, Šantic B, Gracin D (2017) The influence of thermal annealing on the structural, optical and electrical properties of AZO thin films deposited by magnetron sputtering. Surf Coat Technol 321:292

    Article  CAS  Google Scholar 

  32. Jin BJ, Im S, Lee SY (2000) Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films 366:107–110

    Article  CAS  Google Scholar 

  33. Guo B, Qiu ZR, Wong KS (2003) Intensity dependence and transient dynamics of donor–acceptor pair recombination in ZnO thin films grown on (001) silicon. Appl Phys Lett 82:2290

    Article  CAS  Google Scholar 

  34. Cao B, Cai B, Zeng H (2006) Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Appl Physic lett 88:161101

    Article  CAS  Google Scholar 

  35. Rodnyi PA, Khodyuk IV (2011) Optical and luminescence properties of zinc oxide. Opt Spectrosc 111:776

    Article  CAS  Google Scholar 

  36. Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) First-principles study of native point defects in ZnO. Phys Rev B 61:15019

    Article  CAS  Google Scholar 

  37. Singh AV, Kumar M, Mehra RM, Wakahara A, Yoshida A (2013) Al-doped zinc oxide (ZnO: Al) thin films by pulsed laser ablation. J Indian Inst Sci 81:527

    Google Scholar 

  38. Lu JG, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z, Zeng YJ, Zhang YZ, Zhu LP, He HP (2007) Carrier concentration dependence of band gap shift in n-type ZnO: Al films. J Appl Phys 101:083705

    Article  CAS  Google Scholar 

  39. Kim KJ, Park YR (2001) Large and abrupt optical band gap variation in In-doped ZnO. Appl Phys Lett 78:475

    Article  CAS  Google Scholar 

  40. Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Band-gap tailoring of ZnO by means of heavy Al doping. Phys Rev B 37:10244

    Article  CAS  Google Scholar 

  41. Kuzmenko AB (2005) Kramers-Kronig constrained variational analysis of optical spectra. Rev Sci Instrum 76:083108

    Article  CAS  Google Scholar 

  42. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 24:3264–3294

    Article  CAS  Google Scholar 

  43. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 6:795–808

    Article  CAS  Google Scholar 

  44. Worm J. Winspall, 3.02. http://www.mpip-mainz.mpg.de/groups/knoll/software (accessed: December 2012)

  45. Rajak S, Banerjee J, Ray M (2019) Parametric influence of film thickness and incident angle on resonance spectra of pre-and post-annealed Ga doped ZnO. J Appl Phys 125:243105

    Article  CAS  Google Scholar 

  46. Khamh H, Sachet E, Kelly K, Maria JP, Franzen S (2018) As good as gold and better: conducting metal oxide materials for mid-infrared plasmonic applications. J Mater Chem C 6:8326–8342

    Article  CAS  Google Scholar 

  47. Buonsanti R, Llordes A, Aloni S, Helms BA, Milliron DJ (2011) Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano lett 11:4706–4710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors (SK) is thankful to Council of Scientific and Industrial Research, India, for providing Senior Research Fellowship. The authors are thankful to the Director, C-MET Thrissur, for extending the facilities to carry out this work and Reshma P. R., S. Parida of HBNI, SND, IGCAR for the Raman measurements and useful discussion, respectively.

Funding

One of the authors (Soumya K) received grant from Council of Scientific and Industrial Research, India, in the form of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Soumya K: Investigation, Writing—Original draft preparation, Formal Analysis; I. Packia Selvam: Resources, Data curation; Sandip Dhara: Raman Spectroscopy, Writing- Reviewing and Editing; S N Potty: Conceptualization, Supervision, Writing- Reviewing and Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sankara Narayanan Potty.

Ethics declarations

Ethical Statement

The manuscript is original and has not been previously published, is not currently submitted for review to any other journal, and will not be submitted elsewhere before a decision is made by the journal Plasmonics.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannoth, S., Irulappan, P.S., Dhara, S. et al. Wide Band Gap Al and In Co-doped ZnO Films for Near-Infrared Plasmonic Application. Plasmonics 16, 1693–1704 (2021). https://doi.org/10.1007/s11468-021-01434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01434-5

Keywords

Navigation