Skip to main content
Log in

Electromagnetic Wave Propagation Through Two Coaxial Transformation-based Cylindrical Media

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Maxwell’s wave equation is solved analytically in a general medium designed by transformation optics theory with a general form of transformation function on radial coordinate in a cylindrical polar coordinate system. Some well-known examples such as interior invisibility cloak, concentrator and external cloak are solved according to this approach. We particularly concentrate on the external invisibility cloak which was not considered before. In order to investigate the functionality and correctness of the solutions, some simulations with different form of transformation functions are created according to this approach and the simulations are compared with the ones obtained by another method (finite element). Comparison of the results extracted from the two methods show a very good coincidence in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Leonhardt U (2006) Optical conformal mapping. Science 312:1777

    Article  CAS  Google Scholar 

  2. Pendry JB, Schuring D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780

    Article  CAS  Google Scholar 

  3. Lai Y, Chen HY, Zhang ZQ, Chan CT (2009) Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett 102:093901

    Article  Google Scholar 

  4. Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB (2008) Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations. Photon Nanostr Fundam Appl 6:87

    Article  Google Scholar 

  5. Chen HY, Chan CT, Sheng P (2010) Transformation optics and metamaterials. Nat Mater 9:387

    Article  CAS  Google Scholar 

  6. Chen HY, C.T. Chan CT (2007) Transformation media that rotate electromagnetic fields. Appl Phys Lett 90:241105

    Article  Google Scholar 

  7. Ma H, Qu S, Xu Z, Zhang J, Chen B, Wang J (2008) Material parameter equation for elliptical cylindrical cloaks. Phys Rev A 77:013825

    Article  Google Scholar 

  8. Chen T, Weng CN (2009) Invisibility cloak with a twin cavity. Opt Express 17(10):8614

    Article  CAS  Google Scholar 

  9. Forouzeshfard MR, Hosseini Farzad M (2015) Twin invisibility cloak at a distance and its illusory properties. Plasmonics 10:125

    Article  Google Scholar 

  10. Leonhardt U, Tyc T (2009) Broadband invisibility by non-euclidean cloaking. Science 323:110

    Article  CAS  Google Scholar 

  11. Zhang B, Chen HS, Wu BI, Luo Y, Ran L, Kong JA (2007) Response of a cylindrical invisibility cloak to electromagnetic waves. Phys Rev B 76(R):121101

    Article  Google Scholar 

  12. Ruan Z, Yan M, Neff CW, Qiu M (2007) Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. Phys Rev Lett 99:113903

    Article  Google Scholar 

  13. Yan W, Yan M, Ruan Z, Qiu M (2008) Influence of geometrical perturbation at inner boundaries of invisibility cloaks. J Opt Soc Am A 25:4

    Article  Google Scholar 

  14. Yan M, Yan W, Qiu M (2009) Invisibility cloaking by coordinate transformation. In: Progress in optics. Elsevier, pp 261–304

  15. Chen HS, Wu BI, Zhang B, Kong JA (2007) Electromagnetic wave interactions with a metamaterial cloak. Phys Rev Lett 99:063903

    Article  Google Scholar 

  16. Meng FY, Liang Y, Wu Q, Li LW (2009) Invisibility of a metamaterial cloak illuminated by spherical electromagnetic wave. Appl Phys A 95:881

    Article  CAS  Google Scholar 

  17. Castaldi G, Gallina I, Galdi V, Al A, Engheta N (2011) Analytical study of spherical cloak/anti-cloak interactions. Wave Motion 48:455

    Article  Google Scholar 

  18. Cojocaru E (2009) Exact analytical approaches for elliptic cylindrical invisibility cloaks. J Opt Soc Am B 26 (5):1119

    Article  CAS  Google Scholar 

  19. Luo Y, Zhang JJ, Wu BI, Chen HS (2008) Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator. Phys Rev B 78:125108

    Article  Google Scholar 

  20. Luo Y, Chen HS, Zhang JJ, Ran L, Kong JA (2008) Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations. Phys Rev B 77:125127

    Article  Google Scholar 

  21. Yang T, Chen HY, Luo X, Ma H (2008) Superscatterer: enhancement of scattering with complementary media. Opt Express 16(22):18545

    Article  Google Scholar 

  22. Yan M, Ruan ZC, Qiu M (2007) Cylindrical invisibility cloak with simplified material parameters is inherently visible. Phys Rev Lett 99:233901

    Article  Google Scholar 

  23. Zhang JJ, Luo Y, Mortensen NA (2010) Minimizing the scattering of a nonmagnetic cloak. Appl Phys Lett 96:113511

    Article  Google Scholar 

  24. Balanis CA (1989) Advanced engineering electromagnetic. Wiley

  25. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977

    Article  CAS  Google Scholar 

  26. Cai W, Shalaev V (2010) Optical metamaterials fundamentals and application. Springer, New York

    Google Scholar 

  27. Sadeghi MM, Nadgaran H (2013) Perfect field concentrator using zero index metamaterials and perfect electric conductors, Fronterizos Physical. doi:10.1007/s11467-013-0374-0

  28. Sadeghi MM, Li S, Xu L, Hou B, Chen HY (2015) Transformation optics with Fabry-Prot resonances. Sci Rep 5:8680

    Article  CAS  Google Scholar 

  29. Li C, Liu X, Liu G, Li F, Fang G (2011) Experimental demonstration of illusion optics with external cloaking? effects. Appl Phys Lett 99(2011):084104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Forouzeshfard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forouzeshfard, M.R., Farzad, M.H. Electromagnetic Wave Propagation Through Two Coaxial Transformation-based Cylindrical Media. Plasmonics 10, 1345–1357 (2015). https://doi.org/10.1007/s11468-015-9935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9935-0

Keywords

Navigation