Skip to main content

Transformation Electromagnetics Design of All-Dielectric Antennas

  • Chapter
  • First Online:
Transformation Electromagnetics and Metamaterials
  • 4498 Accesses

Abstract

The discrete coordinate transformation is a practical implementation of transformation electromagnetics. It solves the transformation between coordinate systems in a discretized form. This method significantly relaxes the strict requirement for transformation media, and consequently leads to easily-realizable applications in antenna engineering. In this chapter, the discrete coordinate transformation is demonstrated and analyzed from the theory and is proved to provide an all-dielectric approach of device design under certain conditions. As examples, several antennas are presented, including a flat reflector, a flat lens, and a zone plate Fresnel lens. The Finite-Difference Time-Domain (FDTD) method is employed for numerical demonstration. Realization methods are also discussed, and a prototype of the carpet cloak composed of only a few dielectric blocks is fabricated and measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  2. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  3. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  Google Scholar 

  4. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nature Photon 1:224–227

    Article  Google Scholar 

  5. Jiang WX, Chin JY, Li Z, Cheng Q, Liu R, Cui TJ (2008) Analytical design of conformally invisible cloaks for arbitrarily shaped objects. Phys Rev E 77:066607

    Article  Google Scholar 

  6. Alù A, Engheta N (2008) Multifrequency optical invisibility cloak with layered plasmonic shells. Phys Rev Lett 100:113901

    Article  Google Scholar 

  7. Luo Y, Chen H, Zhang J, Ran L, Kong JA (2008) Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations. Phys Rev B 77:125127

    Article  Google Scholar 

  8. Chen H, Hou B, Chen S, Ao X, Wen W, Chan CT (2009) Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. Phys Rev Lett 102:183903

    Article  Google Scholar 

  9. Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB (2008) Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photon Nanostruct Fundam Appl 6:87–95

    Article  Google Scholar 

  10. Yaghjian AD, Maci S (2008) Alternative derivation of electromagnetic cloaks and concentrators. New J Phys 10:115022

    Article  Google Scholar 

  11. Jiang WX, Cui TJ, Cheng Q, Chin JY, Yang XM, Liu R, Smith DR (2008) Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces. Appl Phys Lett 92:264101

    Article  Google Scholar 

  12. Alù A, Engheta N (2009) Cloaking a sensor. Phys Rev Lett 102:233901

    Article  Google Scholar 

  13. Narimanov EE, Kildishev AV (2009) Optical black hole: Broadband omnidirectional light absorber. Appl Phys Lett 95:041106

    Article  Google Scholar 

  14. Cheng Q, Cui TJ, Jiang WX, Cai BG (2010) An omnidirectional electromagnetic absorber made of metamaterials. New J Phys 12:063006

    Article  Google Scholar 

  15. Kong F, Wu B, Kong JA, Huangfu J, Xi S, Chen H (2007) Planar focusing antenna design by using coordinate transformation technology. Appl Phys Lett 91:253509

    Article  Google Scholar 

  16. Kundtz N, Smith DR (2009) Extreme-angle broadband metamaterial lens. Nat Mater 9:129–132

    Article  Google Scholar 

  17. Li J, Pendry JB (2008) Hiding under the carpet: A new strategy for cloaking. Phys Rev Lett 101:203901

    Article  Google Scholar 

  18. Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366–369

    Article  Google Scholar 

  19. Bao D, Rajab KZ, Hao Y, Kallos E, Tang W, Argyropoulos C, Piao Y, Yang S (2011) All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam. New J Phys 13:103023

    Article  Google Scholar 

  20. Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571

    Article  Google Scholar 

  21. Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nature Photon 3:461–463

    Article  Google Scholar 

  22. Thompson JF, Soni BK, Weatherill NP (1999) Handbook of grid generation. CRC Press, Boca Raton

    MATH  Google Scholar 

  23. Holland R (1983) Finite-difference solution of maxwell’s equations in generalized nonorthogonal coordinates. IEEE Trans Nucl Sci 30:4589–4591

    Article  Google Scholar 

  24. Hao Y, Railton CJ (1998) Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes. IEEE Trans Microwave Theory Tech 46:82–88

    Article  Google Scholar 

  25. Pozar DM (2005) Microwave engineering, 3rd edn. Wiley, London

    Google Scholar 

  26. Tang W, Argyropoulos C, Kallos E, Song W, Hao Y (2010) Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE Trans Ant Propag 58:3795–3804

    Article  Google Scholar 

  27. Mesh and grid generation software for CFD - Pointwise. http://www.pointwise.com/

  28. Ma HF, Jiang WX, Yang XM, Zhou XY, Cui TJ (2009) Compact-sized and broadband carpet cloak and free-space cloak. Opt Express 17:19947–19959

    Article  Google Scholar 

  29. Kallos E, Argyropoulos C, Hao Y (2009) Ground-plane quasicloaking for free space. Phys Rev A 79:63825

    Article  Google Scholar 

  30. Shannon CE (1949) Communication in the presence of noise. Proc IRE 37:10–21

    Article  MathSciNet  Google Scholar 

  31. Taflove A, Hagness SC (2005) Computational electrodynamics : the finite-difference time-domain method, 3rd edn. Artech House, London

    Google Scholar 

  32. Hao Y, Mittra R (2009) FDTD modeling of metamaterials: theory and applications. Artech House, London

    MATH  Google Scholar 

  33. Zhao Y, Argyropoulos C, Hao Y (2008) Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures. Opt Express 16:6717–6730

    Article  Google Scholar 

  34. Argyropoulos C, Zhao Y, Hao Y (2009) A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks. IEEE Trans Ant Propag 57:1432–1441

    Article  MathSciNet  Google Scholar 

  35. Yan M, Ruan Z, Qiu M (2007) Scattering characteristics of simplified cylindrical invisibility cloaks. Opt Express 15:17772–17782

    Article  Google Scholar 

  36. HFSS: 3D full-wave electromagnetic field simulation. http://www.ansoft.com/products/hf/hfss

  37. Loewen EG, Popov E (1997) Diffraction gratings and application. Marcel Dekker, New York

    Google Scholar 

  38. Hristov HD (2000) Fresnel zones in wireless lines, zone plate lenses and antennas. Wrtech House, London

    Google Scholar 

  39. Petosa A, Ittipiboon A (2003) Design and performance of a perforated dielectric Fresnel lens. IEE Proc Microw Antennas Propag 150:309–314

    Article  Google Scholar 

  40. Petosa A, Ittipiboon A, Thirakoune S (2006) Investigation on arrays of perforated dielectric Fresnel lenses. IEE Proc Microw Antennas Propag 153:270–276

    Article  Google Scholar 

  41. Yang R, Tang W, Hao Y (2011) A broadband zone plate lens from transformation optics. Opt Express 19:12348–12355

    Article  Google Scholar 

  42. Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76:4773–4776

    Article  Google Scholar 

  43. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Micr Theory Techn 47:2075–2084

    Article  Google Scholar 

  44. Schurig D, Mock JJ, Smith DR (2006) Electric-field-coupled resonators for negative permittivity metamaterials. Appl Phys Lett 88:041109

    Article  Google Scholar 

  45. Smith DR, Schultz S, Markoš P, Soukoulis CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104

    Article  Google Scholar 

  46. Smith DR, Vier DC, Koschny Th, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71:036617

    Article  Google Scholar 

  47. Smith DR, Pendry JB (2006) Homogenization of metamaterials by field averaging. J Opt Soc 23:391

    Article  Google Scholar 

  48. Ma HF, Cui TJ (2010) Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun 1:21

    Google Scholar 

  49. Bao D, Kallos E, Tang W, Argyropoulos C, Hao Y, Cui TJ (2010) A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders. Front Phys China 5:319–323

    Article  Google Scholar 

  50. Kallos E, Argyropoulos C, Hao Y (2009) Ground-plane quasicloaking for free space. Phys Rev A 79:63825

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Tang, W., Hao, Y. (2014). Transformation Electromagnetics Design of All-Dielectric Antennas. In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics