Skip to main content

Advertisement

Log in

Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method and use it to excite a system of plasmonic nanoparticles with an electron beam. This method is applied to EELS calculations of a gold dimer and compared to other methods. It is demonstrated that the GMM method is so efficient, that it can be used in the context of structural optimization by the application of genetic algorithms combined with a simplex algorithm. The scheme is applied to the design of plasmonic filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. García de Abajo FJ (2010) Rev Mod Phys 82(1):209. doi:10.1103/RevModPhys.82.209

    Article  Google Scholar 

  2. Coenen T, Vesseur EJR, Polman A, Koenderink AF (2011) Nano Lett 11 (9):3779. doi:10.1021/nl201839g

    Article  CAS  Google Scholar 

  3. von Cube F, Irsen S, Niegemann J, Matyssek C, Hergert W, Busch K, Linden S (2011) Opt Mater Express 1(5):1009. doi:10.1364/OME.1.001009

    Article  CAS  Google Scholar 

  4. Coenen T, Vesseur EJR, Polman A (2012) ACS Nano 6(2):1742. doi:10.1021/nn204750d

    Article  CAS  Google Scholar 

  5. Vesseur EJR, Aizpurua J, Coenen T, Reyes-Coronado A, Batson PE, Polman A (2012) MRS Bulletin 37(08):752. doi:10.1557/mrs.2012.174

    Article  CAS  Google Scholar 

  6. Mie G (1908) Annalen der Physik 330(3):377. doi:10.1002/andp.19083300302

    Article  Google Scholar 

  7. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd ed. Advanced Series in Applied Physics. Artech House

  8. Waterman P (1965) Proc IEEE 53(8):805. doi:10.1109/PROC.1965.4058

    Article  Google Scholar 

  9. Doicu A, Wriedt T, Eremin YA (2006) Light scattering by systems of particles. Springer Series in Optical Sciences, vol 124. Springer, Berlin

  10. Peterson B, Ström S (1973) Phys Rev D 8:3661. doi:10.1103/PhysRevD.8.3661

    Article  Google Scholar 

  11. Xu Yl (1995) Appl Opt 34(21):4573. doi:10.1364/AO.34.004573

    Article  CAS  Google Scholar 

  12. Xu Yl (1998) Applied Opt 37(27):6494. doi:10.1364/AO.37.006494

    Article  CAS  Google Scholar 

  13. Draine BT, Flatau PJ (1994) J Opt Soc Am A 11(4):1491. doi:10.1364/JOSAA.11.001491

    Article  Google Scholar 

  14. Hafner C (1990) The generalized multipole technique for computational electromagnetics. Artech House Books, Boston

    Google Scholar 

  15. García de Abajo FJ, Howie A (2002) Phys Rev B 65(11):115418. doi:10.1103/PhysRevB.65.115418

  16. Busch K, König M, Niegemann J (2011) Laser Photonics Rev 5(6):773. doi:10.1002/lpor.201000045

    Article  Google Scholar 

  17. Matyssek C, Niegemann J, Hergert W, Busch K (2011) Photonics Nanostruct Fundam Appl 9(4):367. doi:10.1016/j.photonics.2011.04.003

    Article  Google Scholar 

  18. Geuquet N, Henrard L (2010) Ultramicroscopy 110(8):1075. doi:10.1016/j.ultramic.2010.01.013

    Article  CAS  Google Scholar 

  19. Karamehmedović M, Schuh R, Schmidt V, Wriedt T, Matyssek C, Hergert W, Stalmashonak A, Seifert G, Stranik O (2011) Opt Express 19(9):8939. doi:10.1364/OE.19.008939

    Article  Google Scholar 

  20. Ross MB, Schatz GC (2015) J Phys D Appl Phys 48(18):184004. doi:10.1088/0022-3727/48/18/184004

    Article  Google Scholar 

  21. Ginzburg P, Berkovitch N, Nevet A, Shor I, Orenstein M (2011) Nano Lett 11(6):2329. doi:10.1021/nl200612f

    Article  CAS  Google Scholar 

  22. Sukharev M, Seideman T (2006) J Chem Phys 124(14):144707. doi:10.1063/1.2177651

    Article  Google Scholar 

  23. Sukharev M, Seideman T (2006) Nano Lett 6(4):715. doi:10.1021/nl0524896

    Article  CAS  Google Scholar 

  24. Sukharev M, Seideman T (2007) J Phys B: At Mol Opt Phys 40(11):S283. doi:10.1088/0953-4075/40/11/S04

    Article  CAS  Google Scholar 

  25. Forestiere C, Pasquale AJ, Capretti A, Miano G, Tamburrino A, Lee SY, Reinhard BM, Dal Negro L (2012) Nano Lett 12(4):2037. doi:10.1021/nl300140g

    Article  CAS  Google Scholar 

  26. Barber PW, Hill SC (1990) Light scattering by particles: computational methods. Advanced Series in Applied Physics, vol 2. World Scientific

  27. Mackowski DW (1991) Proc R Soc A: Math Phys Eng Sci 433(1889):599. doi:10.1098/rspa.1991.0066

    Article  Google Scholar 

  28. Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley-VCH

  29. García de Abajo FJ (1999) Phys Rev B 59(4):3095. doi:10.1103/PhysRevB.59.3095

    Article  Google Scholar 

  30. Thomas S (2013) Symmetrieeigenschaften und Optimierung photonischer und plasmonischer Nanostrukturen, Master thesis, Martin-Luther-Universität, Halle, Germany

  31. Nelder JA, Mead R (1965) Comput J 7(4):308. doi:10.1093/comjnl/7.4.308

    Article  Google Scholar 

  32. Höflich K, Becker M, Leuchs G, Christiansen S (2012) Nanotechnology, vol 23, p 185303, DOI 10.1088/0957-4484/23/18/185303

  33. Chu W, Gao X, Sorooshian S (2011) Inf Sci 181(22):4909. doi:10.1016/j.ins.2011.06.024

    Article  Google Scholar 

  34. Adcock S Genetic algorithm utility library, retrieved from http://gaul.sourceforge.net

  35. Galassi M GNU Scientific Library Reference Manual. http://www.gnu.org/software/gsl/

  36. Matyssek C, Schmidt V, Hergert W, Wriedt T (2012) Ultramicroscopy 117:46. doi:10.1016/j.ultramic.2012.04.002

  37. Huang F, Baumberg JJ (2010) Nano Lett 10(5):1787. doi:10.1021/nl1004114

    Article  CAS  Google Scholar 

  38. Vial A, Grimault AS, Macías D, Barchiesi D, de la Chapelle ML (2005) Phys Rev B 71(8):085416. doi:10.1103/PhysRevB.71.085416

    Article  Google Scholar 

  39. Etchegoin PG, Le Ru EC, Meyer M (2006) J Chem Phys 125(16):164705. doi:10.1063/1.2360270

    Article  CAS  Google Scholar 

  40. Matyssek CF (2012) Investigation of plasmonic structures by light and electron microscopy: contributions to an efficient numerical treatment. Dissertation, Martin-Luther-Universität Halle-Wittenberg

  41. Johnson PB, Christy RW (1972) Phys Rev B 6(12):4370. doi:10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  42. Zeman EJ, Schatz GC (1987) J Phys Chem 91(3):634. doi:10.1021/j100287a028

    Article  CAS  Google Scholar 

  43. Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Nano Lett 5 (3):515. doi:10.1021/nl050062t

  44. Grady N, Halas N, Nordlander P (2004) Chem Phys Lett 399(1-3):167. doi:10.1016/j.cplett.2004.09.154

    Article  CAS  Google Scholar 

  45. David C, de Abajo FJG (2011) J Phys Chem C 115(40):19470. doi:10.1021/jp204261u

    Article  CAS  Google Scholar 

  46. de Abajo FJG (2008) J Phys Chem C 112(46):17983. doi:10.1021/jp807345h

    Article  Google Scholar 

  47. Duan H, Fernández-Domínguez AI, Bosman M, Maier SA, Yang JKW (2012) Nano Lett 12 (3):1683. doi:10.1021/nl3001309

    Article  CAS  Google Scholar 

  48. Xu Yl, Khlebtsov NG (2003) J Quant Spectrosc Radiat Transf 79-80(0):1121. doi:10.1016/S0022-4073(02)00345-X

    Article  CAS  Google Scholar 

  49. Yan B, Boriskina SV, Reinhard BM (2011) J Phys Chem C 115(11):4578. doi:10.1021/jp112146d

    Article  CAS  Google Scholar 

  50. Zheng P, Cushing SK, Suri S, Wu N (2015) Phys Chem Chem Phys 17(33):21211. doi:10.1039/c4cp05291a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Thomas.

Appendix

Appendix

The spherical vector wave functions (SVWF) can be constructed from the spherical wave functions (SWF). The SWFs are scalar solutions to the Helmholtz equation and can be written as

$$ u_{mn}^{1,3}(k \,\mathbf{r}) = z_{n}^{1,3}(k\,r) P_{n}^{|m|}(\cos \theta) \mathrm{e}^{\mathrm{i} m \varphi} ~, $$
(28)

with n = 1,2,…, m = −n,…, n. (r, 𝜃, ϕ) are the spherical coordinates of the position vector r. Following the definition of [9], the radial part is the spherical Bessel function of first kind \({z_{n}^{1}}(k r) = j_{n}(k r)\) and the spherical Hankel function of first kind \({z_{n}^{3}}(k r) = h_{n}^{(1)}(k r)\) for incoming and outgoing waves, respectively. The polar part of the wave function is given by the associated Legendre polynomials, which depends on the magnitude of m.

Finally, the SVWFs can be constructed using the pilot vector r.

$$\begin{array}{@{}rcl@{}} \mathbf{M}_{mn}^{1,3}(k \,\mathbf{r}) &=& \frac{1}{\sqrt{2n(n+1)}} \nabla u_{mn}^{1,3}(k \,\mathbf{r}) \times \mathbf{r} \end{array} $$
(29)
$$\begin{array}{@{}rcl@{}} \mathbf{N}_{mn}^{1,3}(k \,\mathbf{r}) &=& \frac{1}{k} \nabla \times \mathbf{M}_{mn}^{1,3}(k \,\mathbf{r}) \end{array} $$
(30)

The final expressions used in this paper are

$$\begin{array}{@{}rcl@{}} \mathbf{M}_{mn}^{1,3}(k \,\mathbf{r}) &=& \frac{z_{n}^{1,3}(k \,r)}{\sqrt{2n(n+1)}} \left( \mathrm{i} m \pi_{n}^{|m|}(\theta) \mathbf{e}_{\theta} - \tau_{n}^{|m|}(\theta) \mathbf{e}_{\varphi}\right) \mathrm{e}^{\mathrm{i} m \varphi} \end{array} $$
(31)
$$\begin{array}{@{}rcl@{}} \mathbf{N}_{mn}^{1,3}(k \,\mathbf{r}) &=& \frac{1}{\sqrt{2n(n+1)}} \left( n(n+1) \frac{z_{n}^{1,3}(k\,r)}{k\,r} P_{n}^{|m|}(\cos \theta) \mathbf{e}_{r} \right. \\ && \left.+ \frac{[k\,r z_{n}^{1,3}(k\,r)]'}{k\,r} \left( \tau_{n}^{|m|}(\theta) \mathbf{e}_{\theta} + \mathrm{i} m \pi_{n}^{|m|}(\theta) \mathbf{e}_{\varphi} \right) \right) \mathrm{e}^{\mathrm{i} m \varphi} \end{array} $$
(32)

The angular functions τ and π are defined using the associated Legendre polynomials \({P_{n}^{m}}\) as

$$ {\tau_{n}^{m}}(\theta) = \frac{\mathrm{d}}{\mathrm{d} \theta} {P_{n}^{m}}(\cos \theta),\hspace*{20pt} {\pi_{n}^{m}}(\theta) = \frac{{P_{n}^{m}}(\cos \theta)}{\sin \theta}~. $$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, S., Matyssek, C., Hergert, W. et al. Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures. Plasmonics 11, 865–874 (2016). https://doi.org/10.1007/s11468-015-0120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0120-2

Keywords

Navigation