Skip to main content
Log in

Polarization-Induced Tunability of Plasmonic Light Absorption in Arrays of Sub-Wavelength Elliptical Disks

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Polarization-independent plasmonic light absorbers have been widely investigated in the past decades. Nevertheless, the feasibility for artificial manipulation of the optical properties by controlling the polarization state is desirable for numerous applications including the coloring, displaying, filtering, etc. Here, we present a straightforward method to achieve tunable multiple narrowband light absorption by using the polarization-dependent plasmonic cavity resonances in a common metal-dielectric-metal structure consisting of an elliptical disk array. Multiple light absorption bands with the maximal absorption of 98 % are achieved. Moreover, by controlling the illumination polarization state, artificial spectral modulation depth of these light absorption bands can be up to 90 % based on this structure platform. In addition, since this multispectral polarization-manipulated absorber is realized in such a common sub-wavelength plasmonic structure, it will open up a simple and universal approach for multispectral nanophotonic devices including the high-compact polychromatic color filtering, imaging, and detecting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  2. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  3. Zhou H, Qiu C, Yu F, Yang H, Chen M, Hu L, Sun L (2011) Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes. J Phys Chem C 115:11348–11354

    Article  CAS  Google Scholar 

  4. Teperik V, De Abajo FJG, Borisov AG, Abdelsalam M, Bartlett PN, Sugawara Y, Baumerg JJ (2008) Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics 2:299–301

    Article  CAS  Google Scholar 

  5. Hedayati MK, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula VSK, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M (2011) Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 23:5410–5414

    Article  CAS  Google Scholar 

  6. Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113

    Article  CAS  Google Scholar 

  7. Liu G, Liu Z, Chen YH, Cai ZJ, Hu Y, Zhang XN, Huang K (2014) Multi-band near-unity absorption and near-zero reflection of optical field in metal-dielectric-metal hybrid crystals. Sci Adv Mater 6:1099–1105

    Article  CAS  Google Scholar 

  8. Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G (2015) Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl Mater Interfaces 7:4962–4968

    Article  CAS  Google Scholar 

  9. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  10. Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6:2550–2557

    Article  CAS  Google Scholar 

  11. Freeston I, Meeks N, Sax M, Higgitt C (2007) The Lycurgus cup—a Roman nanotechnology. Gold Bull 40:270

    Article  Google Scholar 

  12. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  13. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  14. Zhao Y, Hao Q, Ma Y, Lu M, Zhang B, Lapsley M, Khoo I-C, Huang TJ (2012) Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array. Appl Phys Lett 100:053119

    Article  CAS  Google Scholar 

  15. Alaee R, Menzel C, Huebner U, Pshenay-Severin E, Hasan SB, Pertsch T, Rockstuhl C, Lederer F (2013) Deep-subwavelength plasmonic nanoresonators exploiting extreme coupling. Nano Lett 13:3482–3486

    Article  CAS  Google Scholar 

  16. Liu Z, Shao H, Liu G, Liu X, Zhou H, Hu Y, Zhang X, Cai Z, Gu G (2014) λ 3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl Phys Lett 104:081116

    Article  CAS  Google Scholar 

  17. Chen K, Adato R, Altug H (2012) Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6:7998–8006

    Article  CAS  Google Scholar 

  18. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517

    Article  CAS  Google Scholar 

  19. Søndergaard T, Novikov SM, Holmgaard T, Eriksen RL, Beermann J, Han Z, Pedersen K, Bozhevolnyi SI (2012) Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat Commun 3:969

    Article  CAS  Google Scholar 

  20. Wang J, Chen Y, Chen X, Hao J, Yan M, Qiu M (2011) Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt Express 19:14726–14734

    Article  CAS  Google Scholar 

  21. Cheng C-W, Abbas MN, Chiu C-W, Lai K-T, Shih M-H, Chang Y-C (2012) Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt Express 20:10376–10381

    Article  CAS  Google Scholar 

  22. Ding F, Cui Y, Ge X, Jin Y, He S (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100:103506

    Article  CAS  Google Scholar 

  23. Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12:1443–1447

    Article  CAS  Google Scholar 

  24. Bossard JA, Lin L, Yun S, Liu L, Werner DH, Mayer TS (2014) Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8:1517–1524

    Article  CAS  Google Scholar 

  25. Najiminaini M, Kaminska B, Lawrence KS, Carson JJL (2014) Bolus tracking with nanofilter-based multispectral videography for capturing microvasculature hemodynamics. Sci Rep 4:4737

    Article  CAS  Google Scholar 

  26. Zhang Z, Wang J, Zhao Y, Lu D, Xiong Z (2011) Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide. Plasmonics 6:773–778

    Article  Google Scholar 

  27. Chen J, Xu R, Mao P, Zhang Y, Liu Y, Tang C, Liu J, Chen T (2015) Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays. Plasmonics 10:341–346

    Article  CAS  Google Scholar 

  28. Zeng B, Gao Y, Bartoli FJ (2014) Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci Rep 3:2840

    Google Scholar 

  29. Liu Z, Liu G, Liu X, Shao H, Chen J, Huang S, Liu M, Fu G (2015) Multispectral sharp plasmon resonances for polarization-manipulated subtractive polychromatic filtering and sensing. Plasmonics. doi:10.1007/s11468-014-9869-y

    Google Scholar 

  30. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  Google Scholar 

  31. Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y, Gu G (2015) Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals. Sensors Actuators B 215:480–488

    Article  CAS  Google Scholar 

  32. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  33. Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo I-C, Chen S, Huang TJ (2011) Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 19:15221–15228

    Article  CAS  Google Scholar 

  34. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98–OP120

    CAS  Google Scholar 

  35. Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S (2014) Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev 8:495–520

    Article  CAS  Google Scholar 

  36. Liu Z, Liu G, Huang S, Liu X, Wang Y, Liu M, Gu G (2015) Enabling access to the confined optical field to achieve high-quality plasmon sensing. IEEE Photon Technol Lett 27:1212–1215

    Google Scholar 

  37. Chu Y, Banaee MG, Crozier KB (2010) Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies. ACS Nano 4:2804–2810

    Article  CAS  Google Scholar 

  38. Li T, Li Q, Xu Y, Chen XJ, Dai QF, Liu H, Lan S, Tie S, Wu LJ (2012) Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope. ACS Nano 6:1268–1277

    Article  CAS  Google Scholar 

  39. Chen L, Li GC, Liu GY, Dai QF, Lan S, Tie SL, Deng HD (2013) Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod. J Phys Chem C 117:20146–20153

    Article  CAS  Google Scholar 

  40. Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Asger Mortensen N (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14:4499–4504

    Article  CAS  Google Scholar 

  41. Liu Z, Liu G, Liu X, Fu G, Liu M (2014) Improved multispectral anti-reflection and sensing of plasmonic slits by silver mirror. IEEE Photon Technol Lett 26:2111

    Article  CAS  Google Scholar 

  42. Lin J, Zhang Y, Qian J, He S (2014) A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance. Laser Photonics Rev 8:610–616

    Article  CAS  Google Scholar 

  43. Qin LD, Zou SL, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Designing, fabricating, and imaging Raman hot spots. Proc Natl Acad Sci U S A 103:13300–13303

    Article  CAS  Google Scholar 

  44. Su KH, Wei QH, Zhang X (2006) Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks. Appl Phys Lett 88:063118–063121

    Article  CAS  Google Scholar 

  45. Joshi B, Chakrabarty A, Wei QH (2010) Numerical studies of metal–dielectric–metal nanoantennas. IEEE Trans Nanotechnol 9:701–707

    Article  Google Scholar 

  46. Minkowski F, Wang F, Chakrabarty A, Wei QH (2014) Resonant cavity modes of circular plasmonic patch nanoantennas. Appl Phys Lett 104:021111

    Article  CAS  Google Scholar 

  47. Wang F, Chakrabarty A, Minkowski F, Sun K, Wei QH (2012) Cavity modes and their excitations in elliptical plasmonic patch nanoantennas. Opt Express 20:11615–11624

    Article  Google Scholar 

  48. Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Zhang X, Huang K (2013) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16:4320–4328

    Article  CAS  Google Scholar 

  49. Sönnichsen C (2001) Plasmons in metal nanostructures. PhD Thesis, Ludwig-Maximilians-Universtät München, München

  50. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  51. Zhang Q, Xiao JJ, Zhang XM, Han D, Gao L (2015) Core–shell structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes. ACS Photonics 2:60–65

    Article  CAS  Google Scholar 

  52. Cai Y, Li Y, Nordlander P, Cremer PS (2012) Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances. Nano Lett 12:4881–4888

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 11464019, 11264017, and 61308096), Natural Science Foundation of Jiangxi Province (Grant 20142BAB212001), and Young Scientist development program of Jiangxi Province (Grant 20142BCB23008).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, G., Wang, Y. et al. Polarization-Induced Tunability of Plasmonic Light Absorption in Arrays of Sub-Wavelength Elliptical Disks. Plasmonics 11, 79–86 (2016). https://doi.org/10.1007/s11468-015-0024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0024-1

Keywords

Navigation