Skip to main content
Log in

Improving Plasmon Sensing Performance by Exploiting the Spatially Confined Field

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A universal method for improving sensing performance has been computationally studied based on a common triple-layer metal-dielectric-metal (MDM) plasmonic perfect absorber (PA). Calculation results show that the originally idled resonant optical field in the middle dielectric spacer can be exploited to enhance the sensing capability via etching the dielectric spacer to open a channel for analyte. By comparing with the sensitivity (S) of the common PA-based sensor, an enhancement factor up to 5.0 can be achieved for an etched PA-based sensor. Moreover, in order to maintain the mechanical stability of the structure, a modified PA-based sensor platform with a solid support for the suspended plasmonic disks array was further employed to study the sensing properties. In comparison with the referenced sensor without suspension technique, all the three sensing factors of the S, the figure of merit (FOM), and the spectral intensity difference related figure of merit (FOM*) are noticeably improved with the enhancement factors up to 2.5, 3, and 57, respectively. In addition, since there is no special dealing with the structure except the need of hollowing the dielectric spacer to open the sensing channel for the analysis, the predicted method profiles itself as a simple and universal strategy to improve the sensing performance of a wide variety of nanoplasmonic sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LSPR:

Localized surface plasmon resonance

MDM:

Metal-dielectric-metal

PA:

Perfect absorber

FOM:

Figure of merit

FWHM:

Full-width at half-maximum

References

  1. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  2. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  3. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Ann Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  4. Zhu J, Deng XC (2011) Improve the refractive index sensitivity of gold nanotube by reducing the restoring force of localized surface plasmon resonance. Sens Actuator B 155:843–847

    Article  CAS  Google Scholar 

  5. Sagle LB, Ruvuna LK, Ruemmele JA, Van Duyne RP (2011) Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 6:1447–1462

    Article  CAS  Google Scholar 

  6. Chen L, Li GC, Liu GY, Dai QF, Lan S, Tie SL, Deng HD (2013) Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod. J Phys Chem C 117:20146–20153

    Article  CAS  Google Scholar 

  7. Li T, Li Q, Xu Y, Chen XJ, Dai QF, Liu H, Lan S, Tie S, Wu LJ (2012) Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope. ACS Nano 6:1268–1277

    Article  CAS  Google Scholar 

  8. Khorasaninejad M, Raeis-Zadeh SM, Amarloo H, Abedzadeh N, Safavi-Naeini S, Saini SS (2013) Colorimetric sensors using nano-patch surface plasmon resonators. Nanotechnology 24:355501

    Article  CAS  Google Scholar 

  9. Liu J, Xu B, Zhang J, Song G (2013) Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit. Plasmonics 8:995–1001

    Article  CAS  Google Scholar 

  10. Lodewijks K, Ryken J, Van Roy W, Borghs G, Lagae L, Dorpe PV (2013) Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications. Plasmonics 8:1379–1385

    Article  CAS  Google Scholar 

  11. Liu Z, Liu G, Liu X, Shao H, Chen J, Huang S, Liu M, Fu G (2015) Multispectral sharp plasmon resonances for polarization-manipulated subtractive polychromatic filtering and sensing. Plasmonics. doi:10.1007/s11468-014-9869-y

    Google Scholar 

  12. Nien L, Chao B, Li J, Hsueh C (2015) Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays. Plasmonics. doi:10.1007/s11468-014-9840-y

    Google Scholar 

  13. Zhou H, Qiu C, Yu F, Yang H, Chen M, Hu L, Sun L (2011) Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes. J Phys Chem C 115:11348–11354

    Article  CAS  Google Scholar 

  14. Otte MA, Estevez M-C, Carrascosa LG, Gonzalez-Guerrero AB, Lechuga LM, Sepulveda B (2011) Improved biosensing capability with novel suspended nanodisks. J Phys Chem C 115:5344–5351

    Article  CAS  Google Scholar 

  15. Keathley PD, Hastings JT (2012) Nano-gap-enhanced surface plasmon resonance sensors. Plasmonics 7:59–69

    Article  Google Scholar 

  16. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 17:442–453

    Article  CAS  Google Scholar 

  17. Willett DR, Chumanov G (2014) LSPR sensor combining sharp resonance and differential optical measurements. Plasmonics 9:1391–1396

    Article  CAS  Google Scholar 

  18. Liu Z, Liu G, Liu X, Fu G, Liu M (2014) Improved multispectral anti-reflection and sensing of plasmonic slits by silver mirror. IEEE Photonics Technol Lett 26:2111

    Article  CAS  Google Scholar 

  19. Chanda D, Shigeta K, Truong T, Lui E, Mihi A, Schulmerich M, Braun PV, Bhargava R, Rogers JA (2011) Coupling of plasmonic and optical cavity modes in quasi-three dimensional plasmonic crystals. Nat Commun 2:479

    Article  CAS  Google Scholar 

  20. Katyal J, Soni RK (2014) Localized surface plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures. Plasmonics 9:1171–1181

    Article  CAS  Google Scholar 

  21. Shen H, Lu G, Zhang T, Liu J, Gu Y, Perriat P, Martini M, Tillement O, Gong Q (2013) Shape effect on a single-nanoparticle based plasmonic nanosensor. Nanotechnology 24:285502

    Article  CAS  Google Scholar 

  22. Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G (2015) Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. J Mater Chem C 3:4222

    Article  CAS  Google Scholar 

  23. Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou Z, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    Google Scholar 

  24. Ameling R, Langguth L, Hentschel M, Mesch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97:253116

    Article  CAS  Google Scholar 

  25. Liu Z, Shao H, Liu G, Liu X, Zhou H, Hu Y, Zhang X, Cai Z, Gu G (2014) λ 3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl Phys Lett 104:081116

    Article  CAS  Google Scholar 

  26. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  27. Becker J, Truegler A, Jakab A, Hohenester U, Soennichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5:161–167

    Article  CAS  Google Scholar 

  28. Chen K, Adato R, Altug H (2012) Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6:7998–8006

    Article  CAS  Google Scholar 

  29. Cheng F, Yang X, Gao J (2014) Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt Lett 39:3185–3188

    Article  Google Scholar 

  30. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  31. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, USA

    Google Scholar 

  32. Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Zhang X, Huang K (2013) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16:4320–4328

    Article  CAS  Google Scholar 

  33. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  34. Joshi B, Chakrabarty A, Wei QH (2010) Numerical studies of metal–dielectric–metal nanoantennas. IEEE Trans Nanotechnol 9:701–707

    Article  Google Scholar 

  35. Minkowski F, Wang F, Chakrabarty A, Wei QH (2014) Resonant cavity modes of circular plasmonic patch nanoantennas. Appl Phys Lett 104:021111

    Article  CAS  Google Scholar 

  36. Liu Z, Hang J, Chen J, Yan Z, Tang C, Chen Z, Zhan P (2012) Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal. Opt Express 20:9215–9225

    Article  Google Scholar 

  37. Liu Z, Liu G, Shao H, Liu X, Liu M, Huang S, Fu G, Xu H, Gao H (2015) Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals. Mater Lett 140:9–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 11464019 and 11264017), Natural Science Foundation of Jiangxi Province (Grant 20142BAB212001), Young Scientist development program of Jiangxi Province (Grant 20142BCB23008).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengqi Liu or Gang Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, G., Liu, X. et al. Improving Plasmon Sensing Performance by Exploiting the Spatially Confined Field. Plasmonics 11, 29–36 (2016). https://doi.org/10.1007/s11468-015-0017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0017-0

Keywords

Navigation