Skip to main content
Log in

Plasmonic Circular Dichroism of the Helical Nanosphere Assemblies and the Helical Nanoellipsoid Assemblies

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigate the circular dichroism (CD) of both the helical gold nanosphere assemblies and the helical gold nanoellipsoid assemblies by means of the discrete dipole approximation (DDA). For the helical gold nanosphere assemblies, we find that, with increasing the number of the nanospheres within a helical pitch, the CD spectra of the assemblies are red-shifted and the intensity of the CD signals is strengthened. We also investigate the E-field distributions of the helical nanosphere assemblies. The results show that the strong CD response of the nanosphere assemblies can be ascribed to the collective dipole and multipole interactions between nanoparticles. The CD signals of the solid helical structure exhibit periodical behaviors in half pitch, which is quite different from that of the nanosphere assemblies. The helical nanoellipsoid assemblies exhibit complicated plasmon-induced CD signals at the localized surface plasmon resonance (LSPR) frequency. The strength and wavelength of the CD signals can be manipulated in the range of 525 to 688 nm via tuning the aspect ratio of the nanoellipsoids. These results are important for designing the chiral plasmonic nanostructures with strong and tailorable optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. George J, Thomas KG (2010) Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes. J Am Chem Soc 132(8):2502–+. doi:10.1021/ja908574j

    Article  CAS  Google Scholar 

  2. Sada K, Takeuchi M, Fujita N, Numata M, Shinkai S (2007) Post-polymerization of preorganized assemblies for creating shape-controlled functional materials. Chem Soc Rev 36(2):415–435. doi:10.1039/b603555h

    Article  CAS  Google Scholar 

  3. Pendry JB (2004) A chiral route to negative refraction. Science 306(5700):1353–1355. doi:10.1126/science.1104467

    Article  CAS  Google Scholar 

  4. Maune HT, Han SP, Barish RD, Bockrath M, Iii WA, Rothemund PW, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5(1):61–66. doi:10.1038/nnano.2009.311

    Article  CAS  Google Scholar 

  5. Fan Z, Govorov AO (2010) Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett 10(7):2580–2587. doi:10.1021/nl101231b

    Article  CAS  Google Scholar 

  6. Fan Z, Govorov AO (2011) Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism. J Phys Chem C 115(27):13254–13261. doi:10.1021/jp204265x

    Article  CAS  Google Scholar 

  7. Fan Z, Govorov AO (2012) Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Lett 12(6):3283–3289. doi:10.1021/nl3013715

    Article  CAS  Google Scholar 

  8. Fan Z, Zhang H, Govorov AO (2013) Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects. J Phys Chem C 117(28):14770–14777. doi:10.1021/jp404987v

    Article  CAS  Google Scholar 

  9. Govorov AO, Fan Z, Hernandez P, Slocik JM, Naik RR (2010) Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett 10(4):1374–1382. doi:10.1021/nl100010v

    Article  CAS  Google Scholar 

  10. Govorov AO, Gun'ko YK, Slocik JM, Gérard VA, Fan Z, Naik RR (2011) Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J Mater Chem 21(42):16806. doi:10.1039/c1jm12345a

    Article  CAS  Google Scholar 

  11. Auguié B, Alonso-Gómez JL, Guerrero-Martínez AS, Liz-Marzán LM (2011) Fingers crossed: optical activity of a chiral dimer of plasmonic nanorods. J Phys Chem Lett 2(8):846–851. doi:10.1021/jz200279x

    Article  Google Scholar 

  12. Guerrero-Martinez A, Auguie B, Alonso-Gomez JL, Dzolic Z, Gomez-Grana S, Zinic M, Cid MM, Liz-Marzan LM (2011) Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew Chem 50(24):5499–5503. doi:10.1002/anie.201007536

    Article  CAS  Google Scholar 

  13. Zhu Z, Liu W, Li Z, Han B, Zhou Y, Gao Y, Tang Z (2012) Manipulation of collective optical activity in one-dimensional plasmonic assembly. ACS Nano 6(3):2326–2332. doi:10.1021/nn2044802

    Article  CAS  Google Scholar 

  14. Schäferling M, Dregely D, Hentschel M, Giessen H (2012) Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys Rev X 2 (3). doi:10.1103/PhysRevX.2.031010

  15. Wang P, Chen L, Wang R, Ji Y, Zhai D, Wu X, Liu Y, Chen K, Xu H (2013) Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas. Nanoscale 5(9):3889–3894. doi:10.1039/c3nr00148b

    Article  Google Scholar 

  16. Christofi A, Stefanou N, Gantzounis G, Papanikolaou N (2012) Giant optical activity of helical architectures of plasmonic nanorods. J Phys Chem C 116(31):16674–16679. doi:10.1021/jp304907s

    Article  CAS  Google Scholar 

  17. Hentschel M, Schäferling M, Metzger B, Giessen H (2013) Plasmonic diastereomers: adding up chiral centers. Nano Lett 13(2):600–606. doi:10.1021/nl3041355

    Article  CAS  Google Scholar 

  18. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Hogele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483(7389):311–314. doi:10.1038/nature10889

    Article  CAS  Google Scholar 

  19. Shen X, Song C, Wang J, Shi D, Wang Z, Liu N, Ding B (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 134(1):146–149. doi:10.1021/ja209861x

    Article  CAS  Google Scholar 

  20. Zhang ZY, Zhao YP (2007) Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method. Appl Phys Lett 90(22):221501. doi:10.1063/1.2743938

    Article  Google Scholar 

  21. Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333(2):848–872. doi:10.1086/166795

    Article  CAS  Google Scholar 

  22. Goodman JJ, Draine BT, Flatau PJ (1991) Application of fast-Fourier-transform techniques to the discrete-dipole approximation. Opt Lett 16(15):1198–1200. doi:10.1364/Ol.16.001198

    Article  CAS  Google Scholar 

  23. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11(4):1491–1499. doi:10.1364/Josaa.11.001491

    Article  Google Scholar 

  24. Collinge MJ, Draine BT (2004) Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry. J Opt Soc Am A 21(10):2023–2028

    Article  Google Scholar 

  25. Zhang H, Govorov A (2013) Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Phys Rev B 87 (7). doi:10.1103/PhysRevB.87.075410

  26. Flatau PJ, Draine BT (2012) User guide for the discrete dipole approximation code DDSCAT 7.2

  27. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. doi:10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  28. Gansel JK, Wegener M, Burger S, Linden S (2010) Gold helix photonic metamaterials: a numerical parameter study. Opt Express 18(2):1059–1069. doi:10.1364/OE.18.001059

    Article  CAS  Google Scholar 

  29. Lu ZQ, Zhao M, Yang ZY, Wu L, Zhang P (2013) Helical metamaterial absorbers: broadband and polarization-independent in optical region. J Lightwave Technol 31(16):2762–2768. doi:10.1109/Jlt.2013.2272632

    Article  Google Scholar 

  30. Gansel JK, Latzel M, Frölich A, Kaschke J, Thiel M, Wegener M (2012) Tapered gold-helix metamaterials as improved circular polarizers. Appl Phys Lett 100(10):101109. doi:10.1063/1.3693181

    Article  Google Scholar 

  31. Schaferling M, Yin X, Giessen H (2012) Formation of chiral fields in a symmetric environment. Opt Express 20(24):26326–26336. doi:10.1364/OE.20.026326

    Article  Google Scholar 

  32. Berova N, Di Bari L, Pescitelli G (2007) Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem Soc Rev 36(6):914–931. doi:10.1039/b515476f

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (grant nos. 10874016 and 11474021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luogen Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Deng, L. Plasmonic Circular Dichroism of the Helical Nanosphere Assemblies and the Helical Nanoellipsoid Assemblies. Plasmonics 10, 399–409 (2015). https://doi.org/10.1007/s11468-014-9821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9821-1

Keywords

Navigation