Skip to main content
Log in

Incidence Ways of Electromagnetic Wave and Their Influences on the Absorption and Resonant Wavelength of Split-Ring Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We systematically investigate the classification of incidence ways (represented by different field polarization and propagation directions of the impinging electromagnetic (EM) wave) and their influences on the EM resonant characteristics of split-ring resonators (SRRs). It is found that the resonance absorption varies noticeably with incidence ways and the variation could reach as large as 60 %, while transmittance almost keeps unchanged. When resonant electric response and resonant magnetic response are both excited in SRRs, EM resonance characteristics are found to be mainly dependent upon electric response rather than on magnetic response. The results also indicate that magnetic resonant wavelength (λ H) induced by coupled magnetic field H component of the EM wave is longer than electric resonant wavelength (λ E) induced by coupled electric field E, and the mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luo J, Chen H, Hou B, Xu P, Lai Y (2013) Nonlocality-induced negative refraction and subwavelength imaging by parabolic dispersions in metal–dielectric multilayered structures with effective zero permittivity. Plasmonics 8(2):1095–1099

    Article  Google Scholar 

  2. Zhang Z, Yu M (2013) Investigation of physical limits of plasmonic focusing lens in different regions. Plasmonics 8(2):817–827

    Article  Google Scholar 

  3. Chen H An invisibility cloak using silver nanowires. Session 1P2 transformation optics and cloaking:84

  4. Tsakmakidis KL, Boardman AD, Hess O (2007) ‘Trapped rainbow’storage of light in metamaterials. Nature 450(7168):397–401

    Article  CAS  Google Scholar 

  5. Hou Y (2013) Which is the interpretation of plasmon resonance in 2D split-ring resonator structure-standing wave or LC circuit? Plasmonics 8(2):665–668

    Article  Google Scholar 

  6. Smith D, Pendry J, Wiltshire M (2004) Metamaterials and negative refractive index. Science 305(5685):788–792

    Article  CAS  Google Scholar 

  7. Katsarakis N, Koschny T, Kafesaki M, Economou EN, Soukoulis C (2004) Electric coupling to the magnetic resonance of split ring resonators. Appl Phys Lett 84(15):2943–2945

    Article  CAS  Google Scholar 

  8. Katsarakis N, Konstantinidis G, Kostopoulos A, Penciu R, Gundogdu T, Kafesaki M, Economou E, Koschny T, Soukoulis C (2005) Magnetic response of split-ring resonators in the far-infrared frequency regime. Opt Lett 30(11):1348–1350

    Article  CAS  Google Scholar 

  9. Zou S, Wang G, Chen S (2013) Magnetic coupling effect on nonlinear properties in negative index metamaterials with a Kerr nonlinearity. Plasmonics 8(3):1361–1367

    Article  CAS  Google Scholar 

  10. Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis CM (2004) Magnetic response of metamaterials at 100 terahertz. Science 306(5700):1351–1353

    Article  CAS  Google Scholar 

  11. Linden S, Enkrich C, Dolling G, Klein MW, Zhou J, Koschny T, Soukoulis CM, Burger S, Schmidt F, Wegener M (2006) Photonic metamaterials: magnetism at optical frequencies. Sel Top Quantum Electron, IEEE J 12(6):1097–1105

    Article  CAS  Google Scholar 

  12. Gay-Balmaz P, Martin OJ (2002) Electromagnetic resonances in individual and coupled split-ring resonators. J Appl Phys 92(5):2929–2936

    Article  CAS  Google Scholar 

  13. Ortuño R, García-Meca C, Martínez A (2014) Terahertz metamaterials on flexible polypropylene substrate. Plasmonics:1–5

  14. Ricci MC, Anlage SM (2006) Single superconducting split-ring resonator electrodynamics. Applied physics letters 88 (26):264102-264102-264103

  15. Ordal MA, Bell RJ, Alexander R Jr, Long L, Querry M (1985) Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl Opt 24(24):4493–4499

    Article  CAS  Google Scholar 

  16. Smith D, Vier D, Koschny T, Soukoulis C (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617

    Article  CAS  Google Scholar 

  17. Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J, Koschny T, Soukoulis C (2005) Magnetic metamaterials at telecommunication and visible frequencies. Phys Rev Lett 95(20):203901

    Article  CAS  Google Scholar 

  18. Klein MW, Enkrich C, Wegener M, Linden S (2006) Second-harmonic generation from magnetic metamaterials. Science 313(5786):502–504

    Article  CAS  Google Scholar 

  19. Pendry JB, Holden AJ, Robbins D, Stewart W (1999) Magnetism from conductors and enhanced nonlinear phenomena. Microw Theory Tech, IEEE Trans 47(11):2075–2084

    Article  Google Scholar 

  20. Tamayama Y, Yasui K, Nakanishi T, Kitano M (2014) A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial. Appl Phys Lett 105(2):021110

    Article  Google Scholar 

  21. Koschny T, Kafesaki M, Economou E, Soukoulis C (2004) Effective medium theory of left-handed materials. Phys Rev Lett 93(10):107402

    Article  CAS  Google Scholar 

  22. Fang A, Huang Z, Koschny T, Soukoulis CM (2011) Overcoming the losses of a split ring resonator array with gain. Opt Express 19(13):12688–12699

    Article  Google Scholar 

  23. Johnson WA, Sinclair MB, Warne LK, Langston WL, Basilio LI (2010) An effective media toolset for use in metamaterial design. Sandia National Laboratories

  24. Tretyakov S (2007) On geometrical scaling of split-ring and double-bar resonators at optical frequencies. Metamaterials 1(1):40–43

    Article  Google Scholar 

  25. Zhou J, Koschny T, Kafesaki M, Economou E, Pendry J, Soukoulis C (2005) Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 95(22):223902

    Article  CAS  Google Scholar 

  26. Klein M, Enkrich C, Wegener M, Soukoulis C, Linden S (2006) Single-slit split-ring resonators at optical frequencies: limits of size scaling. Opt Lett 31(9):1259–1261

    Article  CAS  Google Scholar 

  27. Lahiri B, McMeekin SG, Khokhar AZ, De La Rue RM, Johnson NP (2010) Magnetic response of split ring resonators (SRRs) at visible frequencies. Opt Express 18(3):3210–3218

    Article  CAS  Google Scholar 

  28. Cai W, Shalaev VM (2010) Optical metamaterials, vol 10. Springer

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (No. 2013A014401), Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No. 20120142110064), and Natural Science Foundation of Hubei Province (No. 2012FFB02209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lirong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, L., Huang, L., Sun, R. et al. Incidence Ways of Electromagnetic Wave and Their Influences on the Absorption and Resonant Wavelength of Split-Ring Resonators. Plasmonics 10, 183–189 (2015). https://doi.org/10.1007/s11468-014-9792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9792-2

Keywords

Navigation