Skip to main content

Advertisement

Log in

Thermal Chemosensitization of Breast Cancer Cells to Cyclophosphamide Treatment Using Folate Receptor Targeted Gold Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This article explores the application of hyperthermia mediated by alpha human folate receptor (αHFR) targeted gold nanoparticles (GNPs) for potentiating the cytotoxicity of cyclophosphamide (CPA) in αHFR positive breast cancer cells. Folate functionalized GNPs were delivered to highly αHFR positive breast cancer cells MDA-MB-231 and to MCF-7 breast cancer cells that does not express detectable levels of αHFR followed by hyperthermia. We have shown that hyperthermia induced by folate functionalized GNPs sensitized MDA-MB-231 cells by ten-fold to CPA treatment, whereas MCF-7 cells exhibited only onefold chemosensitization. Collectively, the study suggests the feasibility of using αHFR targeted GNPs for facilitating increased cellula r uptake of CPA in cancer cells expressing elevated αHFR, allowing reduction in drug dosage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khoo KS, Ang PT, Lim AG (1993) Common toxicities of cancer chemotherapy. Singap Med J 34(4):418–420

    CAS  Google Scholar 

  2. Haubitz M (2007) Acute and long-term toxicity of cyclophosphamide. Transplantationsmedizin 19(2):26–31

    Google Scholar 

  3. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1(1):17–32

    CAS  Google Scholar 

  4. Sultana N, Shenoy SB, Sham ME, Keshav S, Kaul R (2012) Nanogoldtechnology-imaging, sensing and target therapy in head and neck cancer. Clin Cancer Investig J 1(1):6–12

    Article  Google Scholar 

  5. Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1(1):31–63

    Article  CAS  Google Scholar 

  6. Kennedy LC, Bickford LR, Lewinski NA et al (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183

    Article  CAS  Google Scholar 

  7. Turkevich J, Stevenson PC, Hillier J (1951) The nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  8. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22

    CAS  Google Scholar 

  9. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266(5193):1961–1966

    Article  CAS  Google Scholar 

  10. Van der Zande BMI, Bӧehmer MR, Fokkink LGJ, Schӧnenberger C (1997) Aqueous gold sols and rod-shaped particles. J Phys Chem B 101(6):852–854

    Article  Google Scholar 

  11. Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75(19):2897–2899

    Article  CAS  Google Scholar 

  12. Caruso F, Spasova M, Salgueirino-Maceira V, Liz-Marzan LM (2001) Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv Mater 13(14):1090–1094

    Article  CAS  Google Scholar 

  13. Chen J, McLellan JM, Siekkinen A, Xiong Y, Li ZY, Xia Y (2006) Facile synthesis of gold-silver nanocages with controllable pores on the surface. J Am Chem Soc 128:14776–14777

    Article  CAS  Google Scholar 

  14. Chen J, Saeki F, Wiley BJ et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477

    Article  CAS  Google Scholar 

  15. Chen JY, Wang DL, Xi JF et al (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322

    Article  CAS  Google Scholar 

  16. Sha MY, Xu H, Penn SG, Cromer R (2007) SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomed 2(5):725–734

    Article  CAS  Google Scholar 

  17. Hering K, Cialla D, Ackermann K et al (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390:113–124

    Article  CAS  Google Scholar 

  18. Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113

    Article  CAS  Google Scholar 

  19. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808

    Article  CAS  Google Scholar 

  20. Burlaka A, Lukin S, Prylutska S et al (2010) Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Exp Oncol 32(1):48–50

    CAS  Google Scholar 

  21. Issels RD (2008) Hyperthermia adds to chemotherapy. Eur J Cancer 44(17):2546–2554

    Article  CAS  Google Scholar 

  22. Krishnan S, Diagaradjane P, Cho SH (2010) Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperthermia 26(8):775–789

    Article  Google Scholar 

  23. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075

    Article  Google Scholar 

  24. Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  Google Scholar 

  25. Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19(20):3136–3141

    Article  CAS  Google Scholar 

  26. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293

    Article  CAS  Google Scholar 

  27. Garin-Chesa P, Campbell I, Saigo PE, Lewis JL, Old LJ, Rettig WJ (1993) Trophoblast and ovarian cancer antigen LK26: sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 142(2):557–567

    CAS  Google Scholar 

  28. Shakeri-Zadeh A, Mansoori GA, Hashemian AR, Eshghi H, Sazgarnia A, Montazerabadi AR (2010) Cancerous cells targeting and destruction using folate conjugated gold nanoparticles. Dyn Biochem Process Biotechnol Mol Biol 4(1):06–12

    Google Scholar 

  29. Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2(4):1911–1928

    Article  CAS  Google Scholar 

  30. Chen H, Ahn R, Van den Bossche J, Thompson DH, O'Halloran TV (2009) Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol Cancer Ther 8(7):1955–1963

    Article  CAS  Google Scholar 

  31. Chung KN, Saikawa Y, Paik TH et al (1993) Stable transfectants of human MCF-7 breast cancer cells with increased levels of the human folate receptor exhibit an increased sensitivity to antifolates. J Clin Invest 91:1289–1294

    Article  CAS  Google Scholar 

  32. Feng D, Song Y, Shi W, Li X, Ma H (2013) Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off–on nanoprobe. Anal Chem 85(13):6530–6535

    Article  CAS  Google Scholar 

  33. Mahalwar A, Sharma A, Sahu R, Rathore DS (2012) Evaluation of receptor mediated endocytosis on cellular internalization: a comparative study of PEGylated nanoparticles and folate anchored PEGylated nanoparticles on MDA-MB-231 cells. Int J Biol Pharm Res 3(3):431–443

    Google Scholar 

  34. Meier R, Henning TD, Boddington S et al (2010) Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133. Radiol 255(2):527–535

    Article  Google Scholar 

  35. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press Publishers, US, pp 224–226

    Google Scholar 

  36. Park IS, Heo E, Nam YS (2012) Colorimetric detection of aliphatic primary amines and a molecular logic gate based on a photochromic phenoxyquinone derivative. J Photochem Photobiol A Chem 238(1):1–6

    CAS  Google Scholar 

  37. Sorensen H, Sorensen S, Bjergegaard C et al. (1999) Chromatography and capillary electrophoresis in food analysis, First Edition, Royal Society of Chemistry, 102–104

  38. Pompeo F, Resasco DE (2002) Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nanolett 2(4):369–373

    Article  CAS  Google Scholar 

  39. Mejri M, Rogé B, BenSouissi A, Michels F, Mathhlouthi M (2005) Effects of some additives on wheat gluten solubility: a structural approach. Food Chem 92(1):7–15

    Article  CAS  Google Scholar 

  40. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  CAS  Google Scholar 

  41. Hildebrandt B, Wust P, Ahlers O et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43(1):33–56

    Article  Google Scholar 

  42. Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17(17–18):1044–1052

    Article  CAS  Google Scholar 

  43. Yamamoto D, Inui T, Tsubota Y et al. (2012) The utility of hyperthermia for local recurrence of breast cancer. World J Surg Oncol 10 (201), doi: 10.1186/1477-7819-10-201

  44. Bull JM (1984) An update on the anticancer effects of a combination of chemotherapy and hyperthermia. Cancer Res 44(10):4853–4856

    Google Scholar 

  45. Dahl O (1988) Interaction of hyperthermia and chemotherapy. Rec Res Cancer Res 107:157–169

    Article  CAS  Google Scholar 

  46. Engelhardt R (1987) Hyperthermia and drugs. Rec Res Cancer Res 104:136–203

    Article  CAS  Google Scholar 

  47. Tanya SH, Travis LJ, Tetyana Y, Kumaradas JC, Warren CWC (2008) Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 20(20):3832–3838

    Article  Google Scholar 

  48. You J, Zhang G, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4(2):1033–1041

    Article  CAS  Google Scholar 

  49. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075

    Article  CAS  Google Scholar 

  50. Muller C, Schibli R (2011) Folic acid conjugates for nuclear imaging of folate receptor positive cancer. J Nucl Med 52(1):1–4

    Article  Google Scholar 

  51. Lu Y, Sega E, Leamon CP, Low PS (2004) Folate receptor targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv Drug Deliv Rev 56(8):1161–1176

    Article  CAS  Google Scholar 

  52. Kularatne SA, Low PS (2010) Targeting of nanoparticles: folate receptor. Methods Mol Biol 624:249–265

    Article  CAS  Google Scholar 

  53. Bhattacharya R, Patra CR, Earl A et al (2007) Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomed Nanotechnol Biol Med 3(3):224–238

    Article  CAS  Google Scholar 

  54. Van Der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13(8):1173–1184

    Article  Google Scholar 

  55. Jang B, Park S, Kang SH et al (2012) Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo. Quant Imaging Med Surg 2(1):1–11

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. K. Satyamoorthy, the Director of Manipal Life Sciences Centre, Manipal University, India for providing us the MCF-7 and MDA-MB-231 cell lines. We would also like to thankfully acknowledge Dr. Firdos Khan, the Chairperson of School of Life Sciences, Manipal University—Dubai Campus, for his cooperation and encouragement, and the students Ms. Deepika Bhagavatula, Ms. Jia Anne Jacob, and Mr. Sanju Simon for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussaina Banu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, H., Stanley, B., Faheem, S.M. et al. Thermal Chemosensitization of Breast Cancer Cells to Cyclophosphamide Treatment Using Folate Receptor Targeted Gold Nanoparticles. Plasmonics 9, 1341–1349 (2014). https://doi.org/10.1007/s11468-014-9747-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9747-7

Keywords

Navigation