Skip to main content
Log in

Optical Scattering by Dense Disordered Metal Nanoparticle Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We address the optical properties of dense disordered yet well-separated metal nanoparticle arrays produced by physical vapor deposition through anodized aluminum oxide membrane masks. Using variations in synthesis parameters, the particle diameters vary from 14 to 50 nm and average center separation from 45 to 112 nm. Ag nanoparticle arrays with no long-range periodicity exhibit apparently random formation of high-intensity depolarized regions relative to orientation of incident electric field. We analyze this behavior numerically using coupled dipole model and explain the contrast formation in recorded scattering images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Daniel MC, Astruc D (2004) Chem Rev 104(1):293. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  2. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Nature Mater 7(6):442. doi:10.1038/nmat2162

    Article  CAS  Google Scholar 

  3. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Annu Rev Anal Chem 1:601. doi:10.1146/annurev.anchem.1.031207.112814

    Article  CAS  Google Scholar 

  4. Atwater HA, Polman A (2010) Nature Mater 9(3):205. doi:10.1038/nmat2629

    Article  CAS  Google Scholar 

  5. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Science 332(6030):702. doi:10.1126/science.1203056

    Article  CAS  Google Scholar 

  6. Lal S, Link S, Halas NJ (2007) Nature Photon 1(11):641. doi:10.1038/nphoton.2007.223

    Article  CAS  Google Scholar 

  7. Dirix Y, Bastiaansen C, Caseri W, Smith P (1999) Adv Mater 11(3):223. doi:10.1002/(SICI)1521-4095(199903)11:3<223::AID-ADMA223>3.0.CO;2-J

  8. Genov DA, Sarychev AK, Shalaev VM, Wei A (2004) Nano Lett 4(1):153. doi:10.1021/nl0343710

    Article  CAS  Google Scholar 

  9. McMillan BG, Berlouis LEA, Cruickshank FR, Pugh D, Brevet PF (2005) Appl Phys Lett 86(21):211912. doi:10.1063/1.1939070

    Article  Google Scholar 

  10. Zou S, Schatz GC (2004) J Chem Phys 121(24):12606. doi:10.1063/1.1826036

    Article  CAS  Google Scholar 

  11. Chu Y, Schonbrun E, Yang T, Crozier KB (2008) Appl Phys Lett 93(18):181108. doi:10.1063/1.3012365

    Article  Google Scholar 

  12. Sung J, Hicks E, Van Duyne R, Spears K (2008) J Phys Chem C 112(11):4091. doi:10.1021/jp077332b

    Article  CAS  Google Scholar 

  13. Zhao L, Kelly KL, Schatz GC (2003) J Phys Chem B 107(30):7343. doi:10.1021/jp034235j

    Article  CAS  Google Scholar 

  14. Auguié B, Barnes WL (2009) Opt Lett 34(4):401. doi:10.1364/OL.34.000401

    Article  Google Scholar 

  15. Nishijima Y, Rosa L, Juodkazis S (2012) Opt Express 20(10):11466. doi:10.1364/OE.20.011466

    Article  CAS  Google Scholar 

  16. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67(4):735. doi:10.1021/ac00100a008

    Article  CAS  Google Scholar 

  17. Hanarp P, Käll M, Sutherland DS (2003) J Phys Chem B 107(24):5768. doi:10.1021/jp027562k

    Article  CAS  Google Scholar 

  18. Haynes CL, Van Duyne RP (2001) J Phys Chem B 105(24):5599. doi:10.1021/jp010657m

    Article  CAS  Google Scholar 

  19. Kim J, Kim J, Song KIB, Lee SQ, Kim EUNK, Choi SEUL, Lee Y, Park KHO (2003) J Microsc 209(3):236. doi:10.1046/j.1365-2818.2003.01132.x

    Article  CAS  Google Scholar 

  20. Buzzi S, Galli M, Agio M, Löffler JF (2009) Appl Phys Lett 94(22):223115. doi:10.1063/1.3142426

    Article  Google Scholar 

  21. Masuda H, Satoh M (1996) Jpn J Appl Phys 35(Part 2, No. 1B):L126. doi:10.1143/JJAP.35.L126

    Article  CAS  Google Scholar 

  22. Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL (2006) Adv Mater 18(4):491. doi:10.1002/adma.200501875

    Article  CAS  Google Scholar 

  23. Nakayama K, Tanabe K, Atwater HA (2008) Appl Phys Lett 93(12):121904. doi:10.1063/1.2988288

    Article  Google Scholar 

  24. Li AP, Müller F, Birner A, Nielsch K, Gösele U (1998) J Appl Phys 84(11):6023. doi:10.1063/1.368911

    Article  CAS  Google Scholar 

  25. Schwind M, Miljković VD, Zäch M, Gusak V, Käll M, Zorić I, Johansson P (2012) ACS nano 6(11):9455. doi:10.1021/nn3021184

    Article  CAS  Google Scholar 

  26. Pastore I, Poplausks R, Apsite I, Pastare I, Lombardi F, Erts D (2011) IOP Conf Ser Mater Sci Eng 23(1):012025. doi:10.1088/1757-899X/23/1/012025

    Article  Google Scholar 

  27. Draine BT, Flatau PJ (1994) J Opt Soc Am A 11(4):1491. doi:10.1364/JOSAA.11.001491

    Article  Google Scholar 

  28. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou S, Schatz GC (2005) J Phys Chem B 109(3):1079. doi:10.1021/jp049084e

    Article  CAS  Google Scholar 

  29. Kuwata H, Tamaru H, Esumi K, Miyano K (2003) Appl Phys Lett 83(22):4625. doi:10.1063/1.1630351

    Article  CAS  Google Scholar 

  30. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley VCH

  31. Johnson PB, Christy RW (1972) Phys Rev B 6(12):4370. doi:10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  32. Rechberger W, Hohenau A, Leitner A, Krenn J, Lamprecht B, Aussenegg F (2003) Opt Comm 220(1-3):137. doi:10.1016/S0030-4018(03)01357-9

    Article  CAS  Google Scholar 

  33. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide, 3rd edn.Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  34. Draine BT (1988) Astrophys J 333:848. doi:10.1086/166795

    Article  CAS  Google Scholar 

  35. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, Cambridge

    Book  Google Scholar 

  36. Calander N, Gryczynski I, Gryczynski Z (2007) Chem Phys Lett 434(4–6):326. doi:10.1016/j.cplett.2006.12.003

    Article  CAS  Google Scholar 

  37. Prikulis J, Xu H, Gunnarsson L, Käll M, Olin H (2002) J Appl Phys 92(10):6211. doi:10.1063/1.1516249

    Article  CAS  Google Scholar 

  38. Khlebtsov BN, Khanadeev VA, Khlebtsov NG (2008) J Phys Chem C 112(33):12760. doi:10.1021/jp802874x

    Article  CAS  Google Scholar 

  39. Pillai S, Green M (2010) Sol Energ Mat Sol Cells 94(9):1481. doi:10.1016/j.solmat.2010.02.046

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris Prikulis.

Additional information

ERAF project 2010/0251/2DP/2.1.1.1.0/10/APIA/VIAA/096

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prikulis, J., Malinovskis, U., Poplausks, R. et al. Optical Scattering by Dense Disordered Metal Nanoparticle Arrays. Plasmonics 9, 427–434 (2014). https://doi.org/10.1007/s11468-013-9639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9639-2

Keywords

Navigation