Skip to main content
Log in

Self-Organized Ag Nanorings Antenna Substrates for Surface-Enhanced Raman Spectroscopy

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigate the surface-enhanced Raman spectroscopy of Ag nanorings antenna in both experiment and simulation. Self-organized Ag nanorings antenna were formed on quartz glass wafers by a simple chemistry reaction without any template. The three-dimensional finite-difference time-domain simulation calculations indicate that the electric field enhancement of Ag nanoring antenna is strongly dependent on the gap distance. A very strong surface plasmon coupling in the gap region of Ag nanoring antenna is observed, whose field intensity is enhanced four times compared to that for Ag nanodomes antenna with the same gap distance. Surface-enhanced Raman scattering (SERS) measurements have shown that the SERS intensity acquired from the Ag nanoring antenna is about 16 times stronger than that obtained from Ag nanodomes antenna. These results pave the way to design plasmonic nanostructures for practical applications that require coupled metallic nanoparticles with enhanced electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced. J Raman Spectrosc 464(5):392–395

    CAS  Google Scholar 

  2. Craig ARA, Patricia R, Catherine M, Venkatesh M, Ken D, Hamish M, Colin JC (2012) Monitoring intracellular redox potential changes using SERS nanosensors. ACS Nano 6(3):888–896

    Google Scholar 

  3. Shima K, Jakob BW, Virginia J, Janina K, Harald K, Katrin K (2013) Electron energy loss and one- and two-photon excited SERS probing of “Hot” plasmonic silver nanoaggregates. Plasmonics 8:763–767

    Article  Google Scholar 

  4. Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6(11):2630–2636

    Article  CAS  Google Scholar 

  5. Alonso-González P, Albella P, Schnelll M, Chen J, Huth F, García-Etxarri A, Casanova F, Golmar F, Arzubiaga L, Hueso LE, Aizpurua J, Hillenbrand R (2012) Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat Commun 3:684–691

    Article  Google Scholar 

  6. Liaw JW, Tsai HY, Huang CH (2012) Size-dependent surface enhanced fluorescence of gold nanorod: enhancement or quenching. Plasmonics 7:543–553

    Article  CAS  Google Scholar 

  7. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  8. Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357–4360

    Article  CAS  Google Scholar 

  9. Aizpurua J, Hanarp P, Sutherland DS, Kall M, Bryant GW, Garcíade-Abajo FJ (2003) Optical properties of gold nanorings. Phys Rev Lett 90(5):057401

    Article  CAS  Google Scholar 

  10. Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263

    Article  CAS  Google Scholar 

  11. Kelf TA, Tanaka Y, Matsuda O, Larsson EM, Sutherland DS, Wright OB (2011) Ultrafast vibrations of gold nanorings. Nano Lett 11(9):3893–3898

    Article  CAS  Google Scholar 

  12. Clark AW, Cooper JM (2011) Nanogap ring antennae as plasmonically coupled SERRS substrates. Small 7(1):119–125

    Article  CAS  Google Scholar 

  13. Jung KY, Teixeira FL, Reano RM (2007) Au/SiO2 nanoring plasmon waveguides at optical communication band. J Lightwave Technol 25(9):2757–2765

    Article  CAS  Google Scholar 

  14. Banaee MG, Crozier KB (2010) Gold nanorings as substrates for surface-enhanced Raman scattering. Opt Lett 35:760–762

    Article  CAS  Google Scholar 

  15. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  16. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120(11):5444–5454

    Article  CAS  Google Scholar 

  17. Granados D, Garcia JM (2003) Appl Phys Lett 82:2401

    Article  CAS  Google Scholar 

  18. Warburton RJ, Schäflein C, Haft D, Bickel F, Lorke A, Karrai K, Garcia JM, Schoenfeld W, Petroff PM (2000) Optical emission from a charge-tunable quantum ring. Nature 405:926–929

    Article  CAS  Google Scholar 

  19. Li KB, Liviu C, Lilin T, Cui B, Matthias G, Teodor V (2008) Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells. Anal Chem 80(13):4945–4950

    Article  CAS  Google Scholar 

  20. Mohamad GB, Kenneth BC (2011) Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy. ACS Nano 5(1):307–314

    Article  Google Scholar 

  21. Rachel N, Christopher T, Duan JS, Ruth P, Mostafa ES (2012) Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett 12(4):2158–2164

    Article  Google Scholar 

  22. Sun FQ, Yu JC, Wang X (2006) Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications. Chem Mater 18(16):3774–3779

    Article  CAS  Google Scholar 

  23. Yan F, Goedel WA (2005) The preparation of mesoscopic rings in colloidal crystal templates. Angew Chem Int Ed 44(14):2084–2088

    Article  CAS  Google Scholar 

  24. Yan F, Goedel WA (2004) Preparation of mesoscopic gold rings using particle imprinted templates. Nano Lett 4(7):1193–1196

    Article  CAS  Google Scholar 

  25. McLellan JM, Geissler M, Xia Y (2004) Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings. J Am Chem Soc 126(35):10830–10831

    Article  CAS  Google Scholar 

  26. Liu JH, Zhang XL, Yu M, Li SM, Zhang JD (2012) Photoinduced silver nanoparticles/ nanorings on plasmid DNA scaffolds. Small 8(2):310–316

    Article  CAS  Google Scholar 

  27. Zhao S, Roberge H, Yelon A, Veres T (2006) New application of AAO template: a mold for nanoring and nanocone arrays. J Am Chem Soc 128(38):12352–12353

    Article  CAS  Google Scholar 

  28. Wang S, Yu GJ, Gong JL, Li QT, Xu HJ, Zhu DZ, Zhu ZY (2006) Large-area fabrication of periodic Fe nanorings with controllable aspect ratios in porous alumina templates. Nanotechnology 17(6):1594–1598

    Article  CAS  Google Scholar 

  29. Wei H, Hao F, Huang Y, Wang W, Nordlander P, Xu H (2008) Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle–nanowire systems. Nano Lett 8(8):2497–2502

    Article  CAS  Google Scholar 

  30. The simulations were performed by the FDTD solutions trademark software. http://www.lumerical.com

  31. Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  CAS  Google Scholar 

  32. Palik ED (1998) Handbook of optical constants of solids III. Academic, New York

    Google Scholar 

  33. Li JJ, Fattal D, Li ZY (2009) Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy. Appl Phys Lett 94(26):263114–263117

    Article  Google Scholar 

  34. Siegfried T, Ekinci Y, Solak HH, Martin OJF, Sigg H (2011) Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors. Appl Phys Lett 99(26):263302–263305

    Article  Google Scholar 

  35. Dawson P, Duenas JA, Boyle MG, Doherty MD, Bell SEJ (2011) Combined antenna and localized plasmon resonance in raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes. Nano Lett 11(2):365–371

    Article  CAS  Google Scholar 

  36. Wen XL, Xi Z, Jiao XJ, Yu WH, Xue GS, Zhang DG, Lu YH, Wang P, Blair S, Ming H (2013) Plasmonic coupling effect in Ag nanocap–nanohole pairs for surface-enhanced raman scattering. Plasmonics 8:225–231

    Article  CAS  Google Scholar 

  37. Yi Z, Tan XL, Niu G, Xu XB, Li XB, Ye X, Luo JS, Luo BC, Wu WD, Tang YJ, Yi YG (2012) Facile preparation of dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil for application as a SERS-substrate. Appl Surf Sci 258(14):5429–5437

    Article  CAS  Google Scholar 

  38. Yi Z, Chen S, Chen Y, Luo JS, Wu WD, Yi YG, Tang YJ (2012) Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering. Thin Solid Films 520(7):2701–2707

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (No. 10804101; 60908023; 11375159), Science and Technology Development Foundation of Chinese Academy of Engineering Physics (No. 2010B0401055), Open Foundation of Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP (No. 12zxjk07), Scholarship Award for Excellent Doctoral Student granted by Ministry of Education (1343-76140000014), Hunan Provincial Innovation Foundation for Postgraduate (No. CX2012B114), and the Open-End Fund for the Valuable and Precision Instruments of Central South University (CSUZC2012032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yougen Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Z., Li, X., Luo, J. et al. Self-Organized Ag Nanorings Antenna Substrates for Surface-Enhanced Raman Spectroscopy. Plasmonics 9, 375–379 (2014). https://doi.org/10.1007/s11468-013-9634-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9634-7

Keywords

Navigation