Skip to main content
Log in

Nanoscale Environment Sensing Scheme with Brownian Nanorod and Plasmon Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Tracking a Brownian particle’s motion allows localized parameters at its immediate vicinity to be measured. In this, the introduction of a rod that is drawn by a tunable attractive force to a cylindrical pillar overcomes the problems of the particle drifting away from the venue of measurement as well as colliding with other particles. With nanoscale particles, fluorescence labeling suffers from photobleaching and erratic signal due to blinking, while monitoring the polarization of scattered light is limited by the accuracy of correlating the rotational state of the rod to intensity changes. Here, we advance having the cylindrical pillar operate as a surface plasmon-based optical resonator to sense the contacts of nanorods. Simulations with a one-dimensional summed difference expression developed to reduce the difficulty of analyzing a three-dimensional dataset comprising wavelength, rod orientation, and gap distance allowed us to confirm distinct changes in transmission at 600 nm across all orientation angles with contact to noncontact or vice versa. This allows application of a cutoff transmission threshold. The metric f, which defines the proportion of incidences when the nanorod moves freely under Brownian motion influence, showed reduction with normalized charge increase. Good linear sensitivity responses were found at specific ranges in the f versus normalized charge relationship, which when correlated with temperature T, showed df/dT to be maximal when the normalized charge product value was −200. From an uncertainty estimation conducted, a restriction to 1 standard deviation variation necessitated only O(10−2) seconds of sampling using standard photodetectors. This portends significant advantages when sensing environments that are changing temporally rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lawson AW, Long EA (1946) Further remarks on the possible use of Brownian motion in low temperature thermometry. Phys Rev 70:977–978

    Article  CAS  Google Scholar 

  2. Wheatley JC, Webb RA (1973) MilliKelvin temperatures measured with a noise thermometer. Science 182:220–307

    Article  Google Scholar 

  3. Kurchan J (2005) In and out of equilibrium. Nature 433:222–225

    Article  CAS  Google Scholar 

  4. van Ommering K, Lamers CCH, Nieuwenhuis JH, van IJzendoorn LJ, Prins MWJ (2009) Analysis of individual magnetic particle motion near a chip surface. J Appl Phys 105:104905

    Article  Google Scholar 

  5. Duggal R, Pasquali M (2006) Dynamics of individual single walled carbon nanotubes in water by realtime visualization. Phys Rev Lett 96:246104

    Article  Google Scholar 

  6. Agayan RR, Smith RG, Kopelman R (2008) Slipping friction of an optically and magnetically manipulated microsphere rolling at a glass–water interface. J Appl Phys 104:054915

    Article  Google Scholar 

  7. Neild A, Ng TW, Yii WMS (2009) Optical sorting of dielectric Rayleigh spherical particles with scattering and standing waves. Opt Express 17:5321–5329

    Article  CAS  Google Scholar 

  8. Volpe G, Volpe G, Petrov D (2007) Brownian motion in a non-homogeneous force field and photonic force microscope. Phys Rev E 76:061118

    Article  Google Scholar 

  9. Einstein A (1905) On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat. Ann Phys 17:549–560

    Article  CAS  Google Scholar 

  10. Smoluchowski MV (1916) Über Brownsche Molekularbewegung unter Einwirkung äußerer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Ann Phys 353:1103–1112

    Article  Google Scholar 

  11. Perrin F (1934) Mouvement brownien d’un ellipsoide - I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys Radium 5:497–511

    Article  CAS  Google Scholar 

  12. Perrin F (1936) Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J Phys Radium 7:1–11

    Article  CAS  Google Scholar 

  13. Han Y, Alsayed AM, Nobili M, Zhang J, Lubensky TC, Yodh AG (2006) Brownian motion of an ellipsoid. Science 314:626–630

    Article  CAS  Google Scholar 

  14. Bhaduri B, Neild A, Ng TW (2008) Directional Brownian diffusion dynamics in carbon nanofibers. Appl Phys Lett 92:084105

    Article  Google Scholar 

  15. Han Y, Alsayed A, Nobili M, Yodh AG (2009) Quasi-two-dimensional diffusion of single ellipsoids: aspect ratio and confinement effects. Phys Rev E 80:011403

    Article  Google Scholar 

  16. Neild A, Padding JT, Lu Y, Bhaduri B, Briels WJ, Ng TW (2010) Translational and rotational coupling in Brownian rods near a solid surface. Phys Rev E 82:041126

    Article  Google Scholar 

  17. Gralinski I, Ng TW (2012) Brownian rod scheme in microenvironment sensing. AIP Adv 2:012180

    Article  Google Scholar 

  18. Yasuda R, Noji H, Yoshida M, Kinosita K, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904

    Article  CAS  Google Scholar 

  19. Sonnichsen C, Alivisatos AP (2005) Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett 5:301–304

    Article  Google Scholar 

  20. van Gent J, Lambeck PV, Kreuwel HJ, Gerritsma GJ, Sudhölter EJ, Reinhoudt DN, Popma TJ (1990) Optimization of a chemooptical surface plasmon resonance based sensor. Appl Opt 29:2843–2849

    Article  Google Scholar 

  21. Chen Y–H, Guo LJ (2013) High Q long-range surface plasmon polariton modes in sub-wavelength metallic microdisk cavity. Plasmonics 8:167–171

    Article  Google Scholar 

  22. Chen J, Li Z, Zou Y, Deng Z, Xiao J, Gong Q (2013) Coupled-resonator-induced fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics. doi:10.1007/s11468-013-9580-4

    Google Scholar 

  23. Lu Q, Chen D, Wu G, Peng B, Xu J (2012) A hybrid plasmonic microresonator with high quality factor and small mode volume. J Opt 14:125503

    Article  Google Scholar 

  24. Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F (2003) Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett 28:272–274

    Article  CAS  Google Scholar 

  25. Ung B, Sheng Y (2007) Interference of surface waves in a metallic nanoslit. Opt Exp 15:1182–1190

    Article  Google Scholar 

  26. Cai M, Painter O, Vahala KJ (2000) Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys Rev Lett 85:74–77

    Article  CAS  Google Scholar 

  27. Dong S, Ding H, Liu Y, Qi X (2012) Investigation of evanescent coupling between tapered fiber and a multimode slab waveguide. Appl Opt 51:C152–C157

    Article  Google Scholar 

  28. Wang L, Li Y, Porcel MG, Vermeulen D, Han X, Wang J, Jian X, Baets R, Zhao M, Morthier G (2012) A polymer-based surface grating coupler with an embedded Si3N4 layer. J Appl Phys 111:114507

    Article  Google Scholar 

  29. Shao L, Fang C, Chen H, Man YC, Wang J, Lin HQ (2012) Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres. Nano Lett 14:1424–1430

    Article  Google Scholar 

  30. Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356

    Article  CAS  Google Scholar 

  31. Muradoglu M, Ng TW, Neild A, Gralinski I (2011) Tailored leaky plasmon waves from a subwavelength aperture for optical particle trapping on a chip. J Opt Soc Am B 28:602–607

    Article  CAS  Google Scholar 

  32. Ma H, Bendix PM, Oddershede LB (2012) Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano Lett 12:3954–3960

    Article  CAS  Google Scholar 

  33. Kang H, Jia B, Li J, Morrish D, Gu M (2010) Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam. Appl Phys Lett 96:063702

    Article  Google Scholar 

  34. Liu H, Sun X, Yao F, Pei Y, Yuan H, Zhao H (2012) Controllable coupling of localized and propagating surface plasmons to Tamm plasmons. Plasmonics 7:749–754

    Article  Google Scholar 

  35. Han X, Ji X, Wen H, Zhang J (2012) H-shaped resonant optical antennas with slot coupling. Plasmonics 7:7–11

    Article  Google Scholar 

Download references

Acknowledgments

T.W. acknowledges funding from the Australian Research Council Discovery Project DP120100583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuck Wah Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muradoglu, M., Lau, C.Y., Gralinski, I. et al. Nanoscale Environment Sensing Scheme with Brownian Nanorod and Plasmon Resonator. Plasmonics 9, 367–374 (2014). https://doi.org/10.1007/s11468-013-9633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9633-8

Keywords

Navigation