Skip to main content
Log in

Characteristics of Plasmonic Filters with a Notch Located Along Rectangular Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a plasmonic filter with a notch located along a rectangular resonator. The finite difference time domain method is utilized to investigate and analyze the transmission characteristics of the filter. Results reveal that the introduction of the notch affects the first and second resonant modes of the resonator in different manners due to different magnetic field distributions inside the resonator. The evolution of the transmission-peak wavelengths as a function of the notch position with the same total resonator length is given. Effects of geometrical parameters of the notch on peak wavelengths are also studied. The corresponding theoretical model of our proposal is discussed, which agrees well with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  3. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  4. Tao J, Jie Q, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759

    Article  Google Scholar 

  5. Guo YH, Yan LS, Pan W, Luo B, Wen KH, Guo Z, Li HY, Luo XG (2011) A plasmonic splitter based on slot cavity. Opt Express 19:13831–13838

    Article  Google Scholar 

  6. Wahsheh RA, Lu Z, Abushagur MAG (2009) Nanoplasmonic couplers and splitters. Opt Express 17:19033–19040

    Article  Google Scholar 

  7. Nikolajsen T, Leosson K, Bozhevolnyi SI (2004) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833–5835

    Article  CAS  Google Scholar 

  8. Chen JJ, Li Z, Li J, Gong QH (2011) Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. Opt Express 19:9976–9985

    Article  CAS  Google Scholar 

  9. Veronis G, Fan S (2007) Modes of subwavelength plasmonic slot waveguides. J Lightwave Technol 25:2511–2521

    Article  Google Scholar 

  10. Gramotnev DK, Vernon KC, Pile DFP (2008) Directional coupler using gap plasmon waveguides. Appl Phys B 93:99–106

    Article  CAS  Google Scholar 

  11. Dionne JA, Sweatlock LA, Atwater HA (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale location. Phys Rev B 73:035407

    Article  Google Scholar 

  12. Wu Z, Haus JW, Zhan QW, Nelson RL (2008) Plasmonic notch filter design based on long-rang surface plasmon excitation along metal grating. Plasmonics 3:2–3

    Article  Google Scholar 

  13. Tan JX, Xie YB, Dong JW, Wang HZ (2012) Flat-top transmission band in periodic plasmonic ring resonators. Plasmonics. doi:10.1007/s11468-011-9325-1

  14. Liu JQ, Wang LL, He MD, Huang WQ, Wang DY, Zou BS, Wen SC (2008) A wide bandgap plasmonic Bragg reflector. Opt Express 16:413–425

    Article  Google Scholar 

  15. Lee PH, Lan YC (2010) Plasmonic waveguide filters based on tunneling and cavity effects. Plasmoonic 5:417–422

    Article  CAS  Google Scholar 

  16. Liu YF, Liu Y, Kim J (2010) Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles. Opt Express 18:11589–11598

    Article  CAS  Google Scholar 

  17. Chang YJ (2010) Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating. Opt Express 18:13258–13270

    Article  CAS  Google Scholar 

  18. He RJ, Wu YK, Zhou XL (2011) Polarization and filter properties investigation of metal gratings and rings. Plasmonics. doi:10.1007/s11468-011-9320-6

  19. Tao J, Huang X, Lin X, Chen J, Zhang Q, Jin X (2010) Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. J Opt Soc Am B 27:323–327

    Article  CAS  Google Scholar 

  20. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874–2876

    Article  Google Scholar 

  21. Xiao SS, Liu LM (2006) Qiu resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14:2932–2937

    Article  Google Scholar 

  22. Wang TB, Wen XW, Yin CP, Wang HZ (2001) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17:24096–24101

    Article  Google Scholar 

  23. Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18:17922–17927

    Article  CAS  Google Scholar 

  24. Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17:7549–7554

    Article  CAS  Google Scholar 

  25. Hu FF, Yi HX, Zhou ZP (2011) Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express 19:4848–4855

    Article  Google Scholar 

  26. Chau YH, Jiang ZH (2011) Plasmonics effects of nanometal embedded in a dielectirc substrate. Plasmonics 6:581–589

    Article  CAS  Google Scholar 

  27. Chau YH (2012) Long-ranging propagation based on resonant coupling effects using a series connection of ten nanoshells in a plasmon waveguide. Appl Opt 51:640–643

    Article  Google Scholar 

  28. Chau YF, Yeh HH, Liu CY, Ping Tsai D (2010) The optical properties in a chain waveguide of an array of sliver nanoshell with dielectric holes. Opt Comm 283:3189–3193

    Article  CAS  Google Scholar 

  29. Wang YH, Wang YQ, Zhang Y, Liu ST (2009) Transmission through metallic array slits with perpendicular cuts. Opt Express 17:5014–5022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by National Basic Research Program of China (2011CB301803, 2012CB315704), the Program for New Century Excellent Talents in University (NCET-08-0821), the State Key Lab of Optical Technologies for Micro-Engineering and Nano-Fabrication of China, and the Fundamental Research Funds for the Central Universities (SWJTU10ZT05, SWJTU11CX136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianshan Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Yan, L., Pan, W. et al. Characteristics of Plasmonic Filters with a Notch Located Along Rectangular Resonators. Plasmonics 8, 167–171 (2013). https://doi.org/10.1007/s11468-012-9372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9372-2

Keywords

Navigation