Skip to main content
Log in

Dichroic Optical Properties of Uniaxially Oriented Gold Nanorods in Polymer Films

  • Published:
Plasmonics Aims and scope Submit manuscript

An Erratum to this article was published on 15 February 2014

Abstract

Applications based on the optical excitation of the longitudinal surface plasmon resonance of gold nanorods (AuNRs) work at highest efficiency if all component AuNRs can be maximally excited simultaneously. This can be achieved in aligned AuNR structures, such as those embedded in uniaxially stretched polymer films. Since too high heating temperatures during film stretching cause reshaping and alteration of optical properties of the rods, a maximum allowable heating temperature is determined. The alignment of the rods is quantified by an orientational order parameter of 0.92 based on a statistically significant sample of assumed t distributed means and obtained by scanning electron microscopy. We show that a stretched AuNRs-PVA composite film has optical properties that approach the dichroic properties of an idealized ensemble of fully aligned, identical, and non-interacting AuNRs embedded in a PVA film. The idealized system is provided by FDTD simulations of a single AuNR, which we carried out using the size- and shape-adapted dielectric function of gold and the software RSOFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

  3. Maier SA (2007) Plasmonics: Fundamentals and Applications. Springer, New York

    Google Scholar 

  4. Link S, Mohamed MB, El-Sayed MA (1999) J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  5. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Coord Chem Rev 249(2005):1870–1901

    Article  CAS  Google Scholar 

  6. Huang X, Neretina S, El-Sayed MA (2009) Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  7. Brioude A, Jiang XC, Pileni MP (2005) J Phys Chem B 109:13138–13142

    Article  CAS  Google Scholar 

  8. Klar T, Perner M, Grosse S, von Plessen G, Spirkl W, Feldmann J (1998) Phys Rev Lett 80:19

    Article  Google Scholar 

  9. Padilha L.A., Fontana J, Kohlgraf-Owens D, Moreira M, Webster S, Palffy-Muhoray P, Kik P.G, Hagan D. J, and Van Stryland E.W., (2009), OSA/CLEO/IQEC

  10. van der Zande BMI, Koper GJM, Lekkerkerker HNW (1999) J Phys Chem B 103:5754–5760

    Article  Google Scholar 

  11. Ahmed W, Kooij ES, van Silfhout A, Poelsema B (2009) Nano Letters 9(11):3786–3794

    Article  CAS  Google Scholar 

  12. Mieszawska AJ, Slawinski GW, Zamborini FP (2006) J Am Chem Soc 128:5622–5623

    Article  CAS  Google Scholar 

  13. van der Zande BMI, Page L, Hikmet RAM, van Blaaderen A (1999) J Phys Chem B 103:5761–5767

    Article  Google Scholar 

  14. Wang Y, Teitel S, Dellago C (2005) Nano Letters 5(11):2174–2178

    Article  CAS  Google Scholar 

  15. Liu Y, Mills EN, Composto RJ (2009) J Mater Chem 19:2704–2709

    Article  CAS  Google Scholar 

  16. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  17. Devore J.L., (2012), Probability and Statistics for Engineering and the Sciences, Brooks/Cole

  18. Hu Z, Fischbein MD, Querner C, Drndic M (2006) Nano Lett 6(11):2585–2591

    Article  CAS  Google Scholar 

  19. Yan B, Yang Y, Wang Y (2003) J Phys Chem B 107:9159

    Article  CAS  Google Scholar 

  20. Link S, El-Sayed MA (2005) J Phys Chem B 109(20):10531

    Article  CAS  Google Scholar 

  21. Wilson O, Wilson GJ, Mulvaney P (2002) Adv Mater 14:13

    Article  Google Scholar 

  22. Pollack GL, Stump DR (2002) “Electromagnetism”. Pearson Education Inc., Addison Wesley, San Francisco

  23. Sandu T (2012) Springer Science+Business Media B.V. J Nanopart Res 14:905

    Article  Google Scholar 

  24. Ashcroft NW, Mermin ND (1976) Solid State Physics. Saunders College, Philadelphia

    Google Scholar 

  25. Zhukov VP, Chulkov EV, Echenique PM (2006) Phys Rev B 73:125105

    Article  Google Scholar 

  26. Genzel L, Martin TP, Kreibig U (1975) Z Physik B 21:339–346

    Article  CAS  Google Scholar 

  27. Noguez C (2007) J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  28. Coronado EA, Schatz GC (2003) J Chem Phys 119:7

    Article  Google Scholar 

  29. Liu M, Guyot-Sionnest P (2004) J Phys Chem B 108:5882–5888

    Article  CAS  Google Scholar 

  30. Johnson PB, Christy RW (1972) Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  31. Kittel C (2005) “Introduction to Solid State Physics”. Wiley, New York

  32. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Phys Rev Lett 88(Nr 7):5

    Google Scholar 

  33. Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Nano Letters 5(3):515–518

    Article  CAS  Google Scholar 

  34. Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland GV (2006) Phys Chem Chem Phys 8(30):3540–3546

    Article  CAS  Google Scholar 

  35. Kumar R, Singh AP, Kapoor A, Tripathi KN (2004) SPIE Proceedings. Opt Eng 43(09):2134–2142

    Article  Google Scholar 

  36. Yu C, Irudayaraj J (2007) Biophys J 93:3684–3692

    Article  CAS  Google Scholar 

  37. Li J, Liu S, Liu Y, Zhou F, Li Z-Y (2010) Appl Phys Lett 96:263103

    Article  Google Scholar 

Download references

Acknowledgments

We wish to warmly thank Nicole A. MacDonald, physicist of Le Centre de Caractérisation Microscopique des Matériaux, Montreal, for her skillful efforts in taking the SEM images of the nanorods. Many thanks as well to Alex MacPherson and Juan Alfara of the Engineering Design and Manufacturing Laboratories of Concordia University for a crash course in SolidWorks and for manufacturing the device for stretching polymer films, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Stoenescu.

Appendix

Appendix

A device for uniaxially stretching polymer films was designed as shown in Fig. 8.

Fig. 8
figure 8

a Exploded drawing of the device for stretching polymer films. b Photograph of a stretched AuNR-PVA composite film still clamped in the device and allowed to dry at room temperature for 24 h

The device was manufactured of aluminum paying attention not to generate stress concentration factors, such as sharp notches or scratches, in order to reduce the fracture risks of the composite film. The device was designed to be operated manually, which should enable a better control of the stretching process. This could be achieved by increasing or just maintaining the tensile stress in the film to allow for the disentanglement of the polymer chains until the desired stretch ratio is reached.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoenescu, S., Truong, VV. & Packirisamy, M. Dichroic Optical Properties of Uniaxially Oriented Gold Nanorods in Polymer Films. Plasmonics 9, 299–307 (2014). https://doi.org/10.1007/s11468-013-9623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9623-x

Keywords

Navigation