Skip to main content
Log in

Interfacial Susceptibilities in Nanoplasmonics via Inversion of Fresnel Coefficients

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The reflection coefficients of a nanoparticle film are driven to a large extent by perpendicular and parallel interfacial susceptibilities that have the meaning of “dielectric thicknesses” which combine the actual geometry of the film and its dielectric properties. The direct determination of these parameters faces the long-standing issue of the derivation of complex optical constants from Fresnel coefficients via a unique spectroscopic measurement. The present work sets up an iterative algorithm based on inversion of the reflection coefficients recorded in the UV–visible range for two polarization states s and p and Kramers–Kronig (KK) analysis. To calculate the KK integrals over a limited energy window, the strategy was to complement measurements by spectra calculated in the framework of the spheroidal dipole approximation. The algorithm has been successfully tested on synthetic data of differential reflectivity for supported truncated spheres. These were chosen to span different dielectric behaviors, involving (a) for the particles, metals whose optical response is dominated by plasmonic excitations with a noticeable Drude behavior (Ag and Au) and (b) for the substrate, either nonabsorbing wide bandgap (alumina) or semiconducting (zincite and titania) oxides. Unlike the thin plate model, the approach was proven to apply to “dielectric thicknesses” of several tens of nanometres in cases in which, even for geometric sizes of the order of the nanometer, the classical long-wavelength dielectric approximation fails because of strong plasmon resonances. Therefore, the disentanglement of dielectric behaviors along the parallel and perpendicular directions simplifies the understanding on the interface polarization process by removing substrate contribution. The present work that deals with plasmonics in nanoparticles can be easily generalized to different morphologies as well as to other combinations of Fresnel coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stockman M (2011) Phys Today 64:39

    Article  Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, Berlin

    Book  Google Scholar 

  3. Bedeaux D, Vlieger J (2001) Optical properties of surfaces. Imperial College Press, London

    Book  Google Scholar 

  4. Noguez C (2007) J Phys Chem 111:3806

    CAS  Google Scholar 

  5. McIntyre J, Aspnes D (1971) Surf Sci 24:417

    Article  CAS  Google Scholar 

  6. Lazzari R, Jupille J (2012) Nanotechnology 23:135707

    Article  Google Scholar 

  7. Grachev S, de Grazia M, Barthel E, Søndergård E, Lazzari R (2013) J Phys D Appl Phys 46:375305. 10pp

    Article  Google Scholar 

  8. Oates T, Christalle E (2007) J Phys Chem C 111:182

    Article  CAS  Google Scholar 

  9. Larsson E, Langhammer C, Zorić I, Kasemo B (2009) Science 326:1091

    Article  CAS  Google Scholar 

  10. Gaudry M, Cottancin E, Pellarin M, Lermé J, Arnaud L, Huntzinger JR, Vialle JL, Broyer M, Rousset JL, Treilleux M, Mélinon P (2003) Phys Rev B 67:155409

    Article  Google Scholar 

  11. Little SA, Begou T, Collins RW, Marsillac S (2012) Appl Phys Lett 100:051107

    Article  Google Scholar 

  12. Drude P (1902) The theory of optics. Longmans, Green and Co, New York

  13. Dignam M, Moskovits M, Stobie R (1971) Trans Faraday Soc 67:3306

    Article  CAS  Google Scholar 

  14. Dignam M, Moskovits M (1973) J Chem Soc Faraday Trans II 69:56

    Article  CAS  Google Scholar 

  15. Bagchi A, Barrera RG, Rajagopal AK (1979) Phys Rev B 20(12):4824

    Article  CAS  Google Scholar 

  16. Feibelman PJ (1982) Prog Surf Sci 12:287

    Article  CAS  Google Scholar 

  17. Hugerl K, Aspnes DE, Kamiya I, Florez LT (1993) Appl Phys Lett 63:885

    Article  Google Scholar 

  18. Bedeaux D, Vlieger J (1973) Physica 67:55

    Article  Google Scholar 

  19. Haarmans M, Bedeaux D (1995) Thin Solid Films 258:213

    Article  CAS  Google Scholar 

  20. Proehl H, Nitsche R, Dienel T, Leo K, Fritz T (2005) Phys Rev B 71:165207

    Article  Google Scholar 

  21. Pollak FH, Shen H (1993) Mat Sci and Eng 10:275

    Google Scholar 

  22. Hummel RE (1983) Phys Stat Sol 76:11

    Article  CAS  Google Scholar 

  23. Borensztein Y, Abelès F (1985) Thin Solid Films 125:129

    Article  CAS  Google Scholar 

  24. Lazzari R, Jupille J (2005) Phys Rev B 71:045409

    Article  Google Scholar 

  25. Camacho-Flores J, Sun L, Saucedo-Zeni N, Weidlinger G, Hohage M, Zeppenfeld P (2008) Phys Rev B 78:075416

    Article  Google Scholar 

  26. Lazzari R, Renaud G, Revenant C, Jupille J, Borenstzein Y (2009) Phys Rev B 79:125428

    Article  Google Scholar 

  27. Debe MK (1987) Prog Surf Sci 24:1

    Article  CAS  Google Scholar 

  28. Proehl H, Dienel T, Nitsche R, Fritz T (2004) Phys Rev Lett 93:097403

    Article  Google Scholar 

  29. Simonsen I, Lazzari R, Jupille J, Roux S (2000) Phys Rev B 61(11):7722

    Article  CAS  Google Scholar 

  30. Lazzari R, Simonsen I, Bedeaux D, Vlieger J, Jupille J (2001) Eur Phys J B 24:267

    Article  CAS  Google Scholar 

  31. Lazzari R, Roux S, Simonsen I, Jupille J, Bedeaux D, Vlieger J (2002) Phys Rev B 65:235424

    Article  Google Scholar 

  32. Lazzari R, Simonsen I, Jupille J (2003) Europhys Lett 61ll(4):541

    Article  Google Scholar 

  33. Lazzari R, Jupille J (2011) Nanotechnology 22:445703

    Article  Google Scholar 

  34. Beita C, Borensztein Y, Lazzari R, Nieto J, Barrera R (1999) Phys Rev B 60(8):6018

    Article  Google Scholar 

  35. Román-Velázquez CE, Noguez C, Barrera RG (2000) Phys Rev B 61(15):10427

    Article  Google Scholar 

  36. Lazzari R, Layet JM, Jupille J (2003) Phys Rev B 68:045428

    Article  Google Scholar 

  37. Nitsche R, Fritz T (2004) Phys Rev B 70:195432

    Article  Google Scholar 

  38. Henrichs S, Collier CP, Saykally RJ, Shen YR, Heath JR (2000) J Am Chem Soc 122:4077

    Article  CAS  Google Scholar 

  39. Poelman D, Smet PF (2003) J Phys D Appl Phys 36:1850

    Article  CAS  Google Scholar 

  40. Shiles E, Sasaki T, Inokuit M, Smith DY (1980) Phys Rev B 22:1612

    Article  CAS  Google Scholar 

  41. Smith D (1985) Dispersion theory, sum rules and their applications in the analysis of optical data. In: Handbook of optical constants of solids, vol 1. Academic, New York, pp 35–64

  42. Prange RE, Drew HD, Restorffg JB (1977) J Phys C Sol Stat Phys 10:5083

    Article  CAS  Google Scholar 

  43. Moreels I, Allan G, De Geyter B, Wirtz L, Delerue C, Hens Z (2010) Phys Rev B 81:235319

    Article  Google Scholar 

  44. Ahrenkiel R (1971) J Opt Soc Am 61:1651

    Article  Google Scholar 

  45. Palmer K, William M, Budde B (1998) Appl Opt 37:2660

    Article  CAS  Google Scholar 

  46. Kuzmenko A (2005) Rev Sci Inst 76:083108

    Article  Google Scholar 

  47. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  48. Bobbert PA, Vlieger J (1987) Physica A 147:115

    Article  Google Scholar 

  49. Wormeester H, Kooij S, Poelsema B (2003) Phys Rev B 68:085406

    Article  Google Scholar 

  50. Wormeester H, Henry AI, Kooija ES, Poelsema B, Pileni MP (2006) J Chem Phys 124:204713

    Article  Google Scholar 

  51. Albano AM, Bedeaux D, Vlieger J (1979) Physica A 99:293

    Article  Google Scholar 

  52. Albano AM, Bedeaux D, Vlieger J (1980) Physica A 102:105

    Article  Google Scholar 

  53. Bedeaux D, Vlieger J (1973) Physica A 73:287

    Google Scholar 

  54. Vlieger J, Bedeaux D (1980) Thin Solid Films 69:107

    Article  CAS  Google Scholar 

  55. King F (1978) J Opt Soc. Am 68:994

    Article  Google Scholar 

  56. Lazzari R, Simonsen I (2002) Thin Solid Films 419:124

    Article  CAS  Google Scholar 

  57. Yamaguchi T, Yoshida S, Kinbara A (1973) Thin Solid Films 18:63

    Article  CAS  Google Scholar 

  58. Yamaguchi T, Yoshida S, Kinbara A (1974) Thin Solid Films 21:173

    Article  CAS  Google Scholar 

  59. Johnson P, Christy R (1972) Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  60. Campbell CT (1997) Surf Sci Rep 27(1–3):1

    Article  CAS  Google Scholar 

  61. Wind MM, Vlieger J (1987) Physica A 141:33

    Article  Google Scholar 

  62. Palik ED (1985) Handbook of optical constants of solids, vol. 1–3. Academic, New York

  63. Jackson JD (1975) Classical electrodynamics. Wiley, New York

    Google Scholar 

  64. Haarmans MT, Bedeaux D (1993) Thin Solid Films 224:117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by Agence Nationale de la Recherche (ANR) (Program “Matériaux et Procédés pour des Produits Performants” contract ANR-2011-RMNP-010, COCOTRANS) and has benefited from a mobility grant AURORA between France and Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Lazzari.

Appendix: Supported Spheroid Polarizability in the Spheroidal Dipole Approximation

Appendix: Supported Spheroid Polarizability in the Spheroidal Dipole Approximation

The aim of this appendix is to recall the expressions of the supported spheroid depolarization factors which are used as starting point of the inversion algorithm of SDRS. The geometry will be restricted to an oblate spheroid as it better describes the experimental particle flattening. Electrostatic interactions, both with the substrate and between particles, are kept at dipolar order for the sake of simplicity. Particles are ordered on a lattice of parameter L. Anyhow, equations for prolate case and up to the quadrupolar order can be easily found in the literature [3]. All the geometrical parameters are defined in the text and in Fig. 1.

The derivation of spheroid polarizabilities was obtained by Bobbert and Vlieger [3, 48, 56]; the Laplace equation is solved by using a multipolar spheroidal expansion [63] of the potential located both at the centers \(\mathcal {O}\) and at the image \(\mathcal {O}_{r}\) points in the substrate for all the spheroids. The continuity of the potential and of the normal derivative of the displacement field at the surface of the spheroids leads to an infinite set of linear equations for the spheroidal multipole coefficients. Once restricted to dipole interaction, the particle polarizability reads as follows:

$$\begin{array}{@{}rcl@{}} \alpha_{S,z} &=& \epsilon_{1} V \frac{\epsilon - \epsilon_{1}}{\epsilon_{1} + L_{z}(\epsilon - \epsilon_{1})} \\ \alpha_{S,\parallel} &=& \epsilon_{1} V \frac{\epsilon - \epsilon_{1}}{\epsilon_{1} + L_{\parallel}(\epsilon - \epsilon_{1})} \end{array} $$
(10)

where \(V=4/3 \pi a^{3} \xi_{0}(1+\xi_{0}^{2})\) is the spheroid volume. The depolarizations factors are given by

$$\begin{array}{@{}rcl@{}} L_{z} &=& (1+\xi_{0}^{2})\left\{ 1- \xi_{0} \arctan\left(\frac{1}{\xi_{0}}\right) - \left(\frac{\epsilon_{1}-\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}}\right) \xi_{0} \Xi(\xi_{1}) - \frac{V}{L^{3}(1 + \xi_{0}^{2})} \Sigma_{20}^{-} \right\} \\ L_{\parallel} &=& \frac{1}{2}(1+\xi_{0}^{2})\left\{ \xi_{0} \arctan\left(\frac{1}{\xi_{0}}\right) -\frac{\xi_{0}^{2}}{1+\xi_{0}^{2}} - \left(\frac{\epsilon_{1}-\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}}\right) \xi_{0} \Xi(\xi_{1}) + \frac{V}{L^{3}(1 + \xi_{0}^{2})} \Sigma_{20}^{+}\right\} \\ \Xi(\xi_{1}) &=& \left( \frac{3}{2} + \xi_{1}^{2}\right) \xi_{1} \ln\left(1 + \frac{1}{\xi_{1}^{2}}\right) - \arctan\left(\frac{1}{\xi_{1}}\right) -\xi_{1} \\ \Sigma_{20}^{\pm} &=& \frac{1}{\sqrt{5 \pi}} \left[ S_{20} \pm \left(\frac{\epsilon_{1}-\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}}\right) \widetilde{S}_{20}^{r}\right] \end{array} $$
(11)

The dipole–dipole interaction between particles comes into play through the lattice sums (\(S_{20}\), \(S_{20}^{r}\)) over the direct \(\mathbf {R}_{i}\) and image \(\mathbf {R}_{i}^{r}\) points. They are defined through the following:

$$\begin{array}{@{}rcl@{}} S_{20}{}&=&{}\sum\limits_{i\ne 0} \left(\frac{L}{r}\right)^{3} \left.Y_{2}^{0}(\theta,\phi)\right|_{\mathbf{r}\,=\,\mathbf{R}_{i}} = - \frac{1}{4} \sqrt{\frac{5}{\pi}} \sum\limits_{i\ne 0} \left(\frac{L}{R_{i}}\right)^{3} \notag\\ \end{array} $$
(12)
$$\begin{array}{@{}rcl@{}} S_{20}^{r} {} &=& {} \sum\limits_{i\ne 0} \left(\frac{L}{r}\right)^{3} \left.Y_{2}^{0}(\theta,\phi)\right|_{\mathbf{r}=\mathbf{R}_{i}^{r}} = \frac{1}{4} \sqrt{\frac{5}{\pi}} \sum\limits_{i\ne 0} \left(\frac{L}{R_{i}^{r}}\right)^{3} \notag\\ &&{\kern9.5pc} \times\left(3 \cos^{2} \theta_{i}^{r}-1\right) \end{array} $$
(13)

where \(Y_{2}^{0}(\theta ,\phi )\) is the spherical harmonics of order \(\ell =2,m=0\). They depend on the spherical angle from direct \((\theta ,\phi )\) or image \((\theta ^{r},\phi ^{r})\) points (Fig. 1). The sums are calculated using the convergence trick of ref. [64]. The IS in the spheroidal dipole approximation are related to the above polarizabilities through the following:

$$ \gamma = \rho \alpha_{S,\parallel}, \quad \beta = \rho \alpha_{S,z} $$
(14)

where \(\rho \) is the number of particles per surface unit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzari, R., Simonsen, I. & Jupille, J. Interfacial Susceptibilities in Nanoplasmonics via Inversion of Fresnel Coefficients. Plasmonics 9, 261–272 (2014). https://doi.org/10.1007/s11468-013-9619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9619-6

Keywords

Navigation