Skip to main content

Advertisement

Log in

Near-Infrared, Surface-Enhanced Fluorescence Using Silver Nanoparticle Aggregates in Solution

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Fluorescence spectroscopy is used in many life science and clinical research diagnostic assays. Improvements in the sensitivity and limit-of-detection of these assays may have profound implications. Here, we demonstrate a near-infrared, surface-enhanced fluorescence technology that increases the signal of IRDye 800CW-labeled streptavidin by up to 2,530-fold while improving the limit-of-detection 1,000-fold. Citrate-stabilized, silver nanoparticles that aggregate in solution were used with the dye-protein conjugate to form plasmon-active nanostructures. The technique is straightforward to implement and fully compatible with commercially available immunoassay instrumentation and consumables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  2. van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJG, van der Zee AGJ, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17(10):1315–1319. doi:10.1038/nm.2472

    Article  Google Scholar 

  3. Wulfkuhle JD, Liotta LA, Petricoin I, Emanuel F (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3(4):267–275. doi:10.1038/nrc1043

    Article  CAS  Google Scholar 

  4. Haab BB (2005) Antibody arrays in cancer research. Mol Cell Proteomics 4(4):377–383. doi:10.1074/mcp.M500010-MCP200

    Article  CAS  Google Scholar 

  5. Sanchez-Carbayo M (2006) Antibody arrays: technical considerations and clinical applications in cancer. Clin Chem 52(9):1651–1659. doi:10.1373/clinchem.2005.059592

    Article  CAS  Google Scholar 

  6. Hanash S (2003) Disease proteomics. Nature 422(6928):226–232. doi:10.1038/nature01514

    Article  CAS  Google Scholar 

  7. Comunale MA, Rodemich-Betesh L, Hafner J, Wang M, Norton P, Di Bisceglie AM, Block T, Mehta A (2012) Linkage specific fucosylation of alpha-1-antitrypsin in liver cirrhosis and cancer patients: implications for a biomarker of hepatocellular carcinoma. PLoS One 5(8):e12419. doi:10.1371/journal.pone.0012419

    Article  Google Scholar 

  8. Sahab ZJ, Semaan SM, Sang Q-XA (2007) Methodology and applications of disease biomarker identification in human serum. Biomarker Insights 2:21–43

    Google Scholar 

  9. Savage N (2011) Early detection: spotting the first signs. Nature 471(7339):S14–S15. doi:10.1038/471S14a

    Article  CAS  Google Scholar 

  10. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L (2003) Early detection: The case for early detection. Nat Rev Cancer 3(4):243–252. doi:10.1038/nrc1041

    Article  CAS  Google Scholar 

  11. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O'Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363(11):1005–1015. doi:10.1056/NEJMoa0907847

    Article  CAS  Google Scholar 

  12. Liang S-L, Chan DW (2007) Enzymes and related proteins as cancer biomarkers: a proteomic approach. Clin Chim Acta 381(1):93–97. doi:10.1016/j.cca.2007.02.017

    Article  CAS  Google Scholar 

  13. Landegren UD, Vanelid J, Hammond M, Nong RY, Wu D, Ulleras E, Kamali-Moghaddam M (2012) Opportunities for sensitive plasma proteome analysis. Anal Chem 84(4):1824–1830. doi:10.1021/ac2032222

    Article  CAS  Google Scholar 

  14. Faca V, Krasnoselsky A, Hanash S (2007) Innovative proteomic approaches for cancer biomarker discovery. Biotechniques 43(3):279–283

    Article  CAS  Google Scholar 

  15. Middendorf LR, Amen J, Bruce RC, Draney D, DeGraff D, Gewecke J, Grone DL, Humphrey P, Little G, Lugade A, Narayanan N, Oommen A, Osterman H, Peterson R, Rada J, Raghavachari R, Roemer SC (1998) Near-infrared fluorescence instrumentation for DNA analysis. In: Daehne S, Resch-Genger U, Wolfbeis OS (eds) Near-infrared dyes for high technology applications, vol 52. Kluwer Academic, Dordrecht, pp 21–53. doi:10.1007/978-94-011-5102-3_2

    Chapter  Google Scholar 

  16. Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5(12):1348–1354. doi:10.1039/b508288a

    Article  CAS  Google Scholar 

  17. Hong G, Tabakman SM, Welsher K, Chen Z, Robinson JT, Wang H, Zhang B, Dai H (2011) Near-infrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angew Chem Int Ed 50(20):4644–4648. doi:10.1002/anie.201100934

    Article  CAS  Google Scholar 

  18. Anderson JP, Griffiths M, Boveia VR (2006) Near-Infrared Fluorescence Enhancement Using Silver Island Films. Plasmonics 1(2–4):103–110. doi:10.1007/s11468-006-9018-3

    Article  CAS  Google Scholar 

  19. Geddes CD, Cao H, Gryczynski I, Gryczynski Z, Fang J, Lakowicz JR (2003) Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: potential applications of indocyanine green to in vivo imaging. J Phys Chem A 107(18):3443–3449. doi:10.1021/jp022040q

    Article  CAS  Google Scholar 

  20. Anderson JP, Griffiths M, Williams JG, Grone DL, Steffens DL, Middendorf LM (2010) Near-IR metal enhanced fluorescence and controlled colloidal aggregation. In: Geddes CD (ed) Metal-enhanced fluorescence. Wiley, Hoboken, pp 119–137. doi:10.1002/9780470642795.ch5

    Chapter  Google Scholar 

  21. Malicka J, Gryczynski I, Geddes C, Lakowicz JR (2003) Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. J Biomed Opt 8(3):472–478. doi:10.1117/1.1578643

    Article  CAS  Google Scholar 

  22. Furtaw MD, Lin D, Wu L, Anderson JP (2009) Near-infrared metal-enhanced fluorescence using a liquid-liquid droplet micromixer in a disposable poly(methyl methacrylate) microchip. Plasmonics 4(4):273–280. doi:10.1007/s11468-009-9103-5

    Article  CAS  Google Scholar 

  23. Tabakman SM, Lau L, Robinson JT, Price J, Sherlock SP, Wang H, Zhang B, Chen Z, Tangsombatvisit S, Jarrell JA, Utz PJ, Dai H (2011) Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat Commun 2:466. doi:10.1038/ncomms1477

    Article  Google Scholar 

  24. Xu S, Hartvickson S, Zhao JX (2008) Engineering of SiO2–Au–SiO2 sandwich nanoaggregates using a building block: single, double, and triple cores for enhancement of near infrared fluorescence. Langmuir 24(14):7492–7499. doi:10.1021/la8004757

    Article  CAS  Google Scholar 

  25. Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3(3):744–752. doi:10.1021/nn900001q

    Article  CAS  Google Scholar 

  26. Bardhan R, Grady NK, Halas NJ (2008) Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells. Small 4(10):1716–1722. doi:10.1002/smll.200800405

    Article  CAS  Google Scholar 

  27. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7(2):496–501. doi:10.1021/nl062901x

    Article  CAS  Google Scholar 

  28. Zhang W, Ding F, Li W-D, Wang Y, Hu J, Chou SY (2012) Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology 23(22):225301. doi:10.1088/0957-4484/23/22/225301

    Article  Google Scholar 

  29. Zhou L, Ding F, Chen H, Ding W, Zhang W, Chou SY (2012) Enhancement of immunoassay's fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. Anal Chem 84(10):4489–4495. doi:10.1021/ac3003215

    Article  CAS  Google Scholar 

  30. Lakowicz J (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298(1):1–24. doi:10.1006/abio.2001.5377

    Article  CAS  Google Scholar 

  31. Lakowicz J (2002) Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301(2):261–277. doi:10.1006/abio.2001.5503

    Article  CAS  Google Scholar 

  32. Lakowicz J (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324(2):153–169. doi:10.1016/j.ab.2003.09.039

    Article  CAS  Google Scholar 

  33. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337(2):171–194. doi:10.1016/j.ab.2004.11.026

    Article  CAS  Google Scholar 

  34. Lakowicz JR, Malicka J, Gryczynski I, Gryczynski Z, Geddes CD (2003) Radiative decay engineering: the role of photonic mode density in biotechnology. J Phys D: Appl Phys 36(14):R240–R249. doi:10.1088/0022-3727/36/14/203

    Article  CAS  Google Scholar 

  35. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz J, Geddes C (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62. doi:10.1016/j.copbio.2005.01.001

    Article  CAS  Google Scholar 

  36. Choudhury SD, Badugu R, Ray K, Lakowicz JR (2012) Silver-gold nanocomposite substrates for metal-enhanced fluorescence: ensemble and single-molecule spectroscopic studies. J Phys Chem C 116(8):5042–5048. doi:10.1021/jp212242x

    Article  Google Scholar 

  37. Geddes CD, Parfenov A, Gryczynski I, Malicka J, Roll D, Lakowicz JR (2003) Fractal silver structures for metal-enhanced fluorescence: applications for ultra-bright surface assays and lab-on-a-chip-based technologies. J Fluoresc 13(2):119–122. doi:10.1023/A:1022916524083

    Article  CAS  Google Scholar 

  38. Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2003) Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities. J Fluoresc 13(3):267–276. doi:10.1023/A:1025046101335

    Article  CAS  Google Scholar 

  39. Nooney R, Clifford A, LeGuevel X, Stranik O, McDonagh C, MacCraith BD (2010) Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence. Anal Bioanal Chem 396(3):1127–1134. doi:10.1007/s00216-009-3357-9

    Article  CAS  Google Scholar 

  40. Tang F, Ma N, Tong L, He F, Li L (2012) Control of metal-enhanced fluorescence with pH- and thermoresponsive hybrid microgels. Langmuir 28(1):883–888. doi:10.1021/la203704j

    Article  CAS  Google Scholar 

  41. Wei X, Li H, Li Z, Vuki M, Fan Y, Zhong W, Xu D (2012) Metal-enhanced fluorescent probes based on silver nanoparticles and its application in IgE detection. Anal Bioanal Chem 402(3):1057–1063. doi:10.1007/s00216-011-5591-1

    Article  CAS  Google Scholar 

  42. Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett 7(7):2101–2107. doi:10.1021/nl071084d

    Article  CAS  Google Scholar 

  43. Zhang J, Lakowicz JR (2006) A model for DNA detection by metal-enhanced fluorescence from immobilized silver nanoparticles on solid substrate. J Phys Chem B 110(5):2387–2392. doi:10.1021/jp055370u

    Article  CAS  Google Scholar 

  44. Zhang J, Lakowicz JR (2007) Metal-enhanced fluorescence of an organic fluorophore using gold particles. Opt Express 15(5):2598–2606. doi:10.1364/OE.15.002598

    Article  CAS  Google Scholar 

  45. Fort E, Grésillon S (2008) Surface enhanced fluorescence. J Phys D: Appl Phys 41(1):013001. doi:10.1088/0022-3727/41/1/013001

    Article  Google Scholar 

  46. Ming T, Chen H, Jiang R, Li Q, Wang J (2012) Plasmon-controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett 3(2):191–202. doi:10.1021/jz201392k

    Article  CAS  Google Scholar 

  47. Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1(3):438–483. doi:10.1364/AOP.1.000438

    Article  Google Scholar 

  48. Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19(22):22029–22106. doi:10.1364/OE.19.022029

    Article  Google Scholar 

  49. Zhao L, Ming T, Chen H, Liang Y, Wang J (2011) Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods. Nanoscale 3(9):3849–3859. doi:10.1039/C1NR10544B

    Article  CAS  Google Scholar 

  50. Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15(21):14266–14274. doi:10.1364/OE.15.014266

    Article  CAS  Google Scholar 

  51. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. doi:10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  52. Maier SA (2007) Plasmonics : fundamentals and applications. Springer, New York

    Google Scholar 

  53. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7(3):690–696. doi:10.1021/nl062795z

    Article  CAS  Google Scholar 

  54. Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kurzinger K, Klar T, Feldmann J (2008) Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett 100(20):203002. doi:10.1103/PhysRevLett.100.203002

    Article  CAS  Google Scholar 

  55. Bharadwaj P, Beams R, Novotny L (2011) Nanoscale spectroscopy with optical antennas. Chem Sci 2(1):136–140. doi:10.1039/C0SC00440E

    Article  CAS  Google Scholar 

  56. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–77. doi:10.1039/DF9511100055

    Article  Google Scholar 

  57. Lee P, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. doi:10.1021/j100214a025

    Article  CAS  Google Scholar 

  58. Schwartzberg AM, Grant CD, Wolcott A, Talley CE, Huser TR, Bogomolni R, Zhang JZ (2004) Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J Phys Chem B 108(50):19191–19197. doi:10.1021/jp048430p

    Article  CAS  Google Scholar 

  59. Quinten M (2001) Local fields close to the surface of nanoparticles and aggregates of nanoparticles. Appl Phys B: Lasers Opt 73:245–255

    Article  CAS  Google Scholar 

  60. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR, Duffy DC (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28(6):595–599. doi:10.1038/nbt.1641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a NSF EPSCoR University-Industry R&D Partnership Award. We would also like to thank John Williams for his review and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Furtaw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furtaw, M.D., Anderson, J.P., Middendorf, L.R. et al. Near-Infrared, Surface-Enhanced Fluorescence Using Silver Nanoparticle Aggregates in Solution. Plasmonics 9, 27–34 (2014). https://doi.org/10.1007/s11468-013-9594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9594-y

Keywords

Navigation