Skip to main content
Log in

Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we used a model assay system (polyclonal human IgG–goat antihuman IgG) to elucidate some of the key factors that influence the analytical performance of bioassays that employ metal-enhanced fluorescence (MEF) using silver nanoparticles (NPs). Cy5 dye was used as the fluorescent label, and results were compared with a standard assay performed in the absence of NPs. Two sizes of silver NPs were prepared with respective diameters of 60 ± 10 and 149 ± 16 nm. The absorption spectra of the NPs in solution were fitted accurately using Mie theory, and the dipole resonance of the 149-nm NPs in solution was found to match well with the absorption spectrum of Cy5. Such spectral matching is a key factor in optimizing MEF. NPs were deposited uniformly and reproducibly on polyelectrolyte-coated polystyrene substrates. Compared to the standard assay performed without the aid of NPs, significant improvements in sensitivity and in limit of detection (LOD) were obtained for the assay with the 149-nm NPs. An important observation was that the relative enhancement of fluorescence increased as the concentration of antigen increased. The metal-assisted assay data were analyzed using standard statistical methods and yielded a LOD of 0.086 ng/mL for the spectrally matched NPs compared to a value of 5.67 ng/mL obtained for the same assay in the absence of NPs. This improvement of ∼66× in LOD demonstrates the potential of metal-enhanced fluorescence for improving the analytical performance of bioassays when care is taken to optimize the key determining parameters.

Metal nanoparticle-enhanced fluorescence immunoassay using a sandwich assay format

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chowdhury MH, Ray K, Aslan K, Lakowicz JR, Geddes CD (2007) J Phys Chem C 111:18856–18863

    Article  CAS  Google Scholar 

  2. Zhang J, Lakowicz JR (2007) Opt Express 15:2598–2606

    Article  CAS  Google Scholar 

  3. Matveeva EG, Gryczynski I, Barnett A, Leonenko Z, Lakowicz JR, Gryczynski Z (2007) Anal Biochem 363:239–245

    Article  CAS  Google Scholar 

  4. Matveeva EG, Gryczynski Z, Lakowicz JR (2005) J Immunol Methods 302:26–35

    Article  CAS  Google Scholar 

  5. Lochner N, Lobmaier C, Wirth M, Leitner A, Pittner F, Gabor F (2003) Eur J Pharm Biopharm 56:469–477

    Article  CAS  Google Scholar 

  6. Matveeva E, Gryczynski Z, Malicka J, Gryczynski I, Lakowicz JR (2004) Anal Biochem 334:303–311

    Article  CAS  Google Scholar 

  7. Mie G (1908) Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  8. Ihara M, Tanaka K, Sakaki K, Honma I, Yamada K (1997) J Phys Chem B 101:5153–5157

    Article  CAS  Google Scholar 

  9. Lakowicz JR, Shen B, Gryczynski Z, D’Auria S, Gryczynski I (2001) Biochem Biophys Res Commun 286:875–879

    Article  CAS  Google Scholar 

  10. Chen Y, Munichuka K, Ginger DS (2007) Nano Lett 7:690–696

    Article  CAS  Google Scholar 

  11. Szmacinski H, Smith DS, Hanson MA, Kostov Y, Lakowicz JR, Rao G (2008) Biotech Bioeng 100:448–457

    Article  CAS  Google Scholar 

  12. Yamaguchi T, Kaya T, Takei H (2007) Anal Biochem 364:171–179

    Article  CAS  Google Scholar 

  13. Nooney RI, Stranik O, McDonagh C, MacCraith BD (2008) Langmuir 24:11261–11267

    Article  CAS  Google Scholar 

  14. Amersham CyDye™ momo-reactive NHS Esters, Product Booklet, GE Healthcare, UK Limited

  15. Tan YW, Li YF, Zhu DB (2003) J Coll Int Sci 258:244–251

    Article  CAS  Google Scholar 

  16. Eirich FR (1977) J Coll Int Sci 58:423–436

    Article  CAS  Google Scholar 

  17. Horisberger M (1981) In: Johari O (ed) Scanning electron microscopy, vol. 2. SEM Inc. AMF O'Hare, Chicago

    Google Scholar 

  18. Horisberger M, Vauthey M (1984) Histochemistry 80:13–18

    Article  CAS  Google Scholar 

  19. Martinez A (2005) J Braz Chem Soc 16:337–344

    Article  CAS  Google Scholar 

  20. Diamandis EP, Christopoulos TK (1996) Immunoassay. Academic, New York

    Google Scholar 

  21. Finlay JNA, Smith WC, Lee JW, Nordblom GD, Das I, DeSilver BS, Khan MN, Bousher RR (2000) J Pharm Biomed Anal 21:1249–1273

    Article  Google Scholar 

  22. West W, Pearce S (1965) J Phys Chem 69:1894–1903

    Article  CAS  Google Scholar 

  23. Malynych S, Chumanov G (2007) J Quant Spectrosc Radiat Transfer 106:297–303

    Article  CAS  Google Scholar 

  24. Spillman SD, McEvoy HM, MacCraith BD (2009) Langmuir 25:1403–1411

    Article  CAS  Google Scholar 

  25. Grabar KC, Smith PC, Musick MD, Davis JA, Walter DG, Jackson MA, Guthrie AP, Natan MJ (1996) J Am Chem Soc 118:1148–1153

    Article  CAS  Google Scholar 

  26. Malicka J, Gryczynski I, Lakowicz JR (2003) Biochem Biophys Res Commun 306:213–218

    Article  CAS  Google Scholar 

  27. Lakowicz JR, Malicka J, D’Auria S, Gryczynski I (2003) Anal Biochem 320:13–20

    Article  CAS  Google Scholar 

  28. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  29. Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Analyst 133:1308–1346

    Article  CAS  Google Scholar 

  30. Xu H, Zhao X, Grant C, Lu JR, Williams D, Penfold J (2006) Langmuir 22:6313–6320

    Article  CAS  Google Scholar 

  31. Xu H, Zhao X, Lu JR, Williams D (2007) Biomacromolecules 8:2422–2428

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This material is based upon a work supported by the Science Foundation Ireland under grant no. 05/CE3/B754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. MacCraith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nooney, R., Clifford, A., LeGuevel, X. et al. Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence. Anal Bioanal Chem 396, 1127–1134 (2010). https://doi.org/10.1007/s00216-009-3357-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3357-9

Keywords

Navigation