Skip to main content
Log in

Fluorescent (Au@SiO2)SiC Nanohybrids: Influence of Gold Nanoparticle Diameter and SiC Nanoparticle Surface Density

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Gold@silica core–shell nanoparticles were prepared with various gold core diameters (ranging from 20 to 150 nm) and silica thicknesses (ranging from 10 to 30 nm). When the gold diameter is increased, the size dispersion became larger, leading to a broader plasmon band. Then, silicon carbide (SiC) nanoparticles were covalently immobilized onto silica to obtain hybrid (Au@SiO2) SiC nanoparticles. The absorption properties of these hybrid nanoparticles showed that an excess of SiC nanoparticles in the dispersion can be identified by a strong absorption in the UV region. Compared to SiC reference samples, a blue shift of the fluorescence emission, from 582 to 523 nm, was observed, which was previously attributed to the strong surface modification of SiC when immobilized onto silica. Finally, the influence of several elaboration parameters (gold diameter, silica thickness, SiC concentration) on fluorescence enhancement was investigated. It showed that the highest enhancements were obtained with 10 nm silica thickness, low concentration of SiC nanoparticles, and surprisingly, with a 20-nm gold core diameter. This last result could be attributed to the broad plasmon band of big gold colloids. In this case, SiC emission strongly overlapped gold absorption, leading to possible quenching of SiC fluorescence by energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lakowicz JR, Geddes CD (2005) Radiative decay engineering. Vol. 8—topics in fluorescence spectroscopy. Springer, New York

    Google Scholar 

  2. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33

    Article  CAS  Google Scholar 

  3. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24

    Article  CAS  Google Scholar 

  4. Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15:14266–14274

    Article  CAS  Google Scholar 

  5. Tovmachenko OG et al (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mater 18:91–95

    Article  CAS  Google Scholar 

  6. Liu N et al (2006) Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor–metal interactions. J Am Chem Soc 128:15362–15363

    Article  CAS  Google Scholar 

  7. Zhang F et al (2010) Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J Am Chem Soc 132:2850–2851

    Article  CAS  Google Scholar 

  8. Jin Y, Gao X (2009) Plasmonic fluorescent quantum dots. Nat Nanotechnol 4:571–576

    Article  CAS  Google Scholar 

  9. Zhang J et al (2007) Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett 7:2101–2107

    Article  CAS  Google Scholar 

  10. Li C et al (2012) Metal-enhanced fluorescence of carbon dots adsorbed Ag@SiO2 core-shell nanoparticles. RSC Adv 2:1765–1768

    Article  CAS  Google Scholar 

  11. Nychyporuk T et al (2011) Strong photoluminescence enhancement of silicon quantum dots by their near-resonant coupling with multi-polar plasmonic hot spots. Nanoscale 3:2472–2475

    Article  CAS  Google Scholar 

  12. Sui N et al. (2012) Plasmon-controlled fluorescence in (Au@SiO2)SiC nanohybrids: enhanced, narrower and blue-shifted emission of SiC nanoparticles. J Nanopart Res 14:1004

    Google Scholar 

  13. Zhang Y et al (2011) Metal-enhanced photoluminescence from carbon nanodots. Chem Commun 47:5313–5315

    Article  CAS  Google Scholar 

  14. Zakharko Y et al Plasmon-enhanced photoluminescence of SiC quantum dots for cell imaging applications. Plasmonics. doi:10.1007/s11468-012-9364-2

  15. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci 241:20–22

    CAS  Google Scholar 

  16. Liz-Marzan LM et al (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12:4329–4335

    Article  CAS  Google Scholar 

  17. Stöber W et al (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  18. Botsoa J et al (2008) Application of 3C-SiC quantum dots for living cell imaging. Appl Phys Lett 92:173902

    Article  Google Scholar 

  19. Westcott SL et al (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14:5396–5401

    Article  CAS  Google Scholar 

  20. Patungwasa W, Hodak JH (2008) pH tunable morophology of the gold nanoparticles produced by citrate reduction. Mater Chem Phys 108:45–54

    Article  CAS  Google Scholar 

  21. Zakharko Y et al (2010) Influence of the interfacial chemical environment on the luminescence of 3C-SiC nanoparticles. J Appl Phys 107:013503

    Article  Google Scholar 

  22. Fan J et al (2008) 3C-SiC nanocrystals as fluorescent biological labels. Small 4:1058–1062

    Article  CAS  Google Scholar 

  23. Maye MM et al (2010) Photoluminescence enhancement in CdSe/ZnS–DNA linked–Au nanoparticle heterodimers probed by single molecule spectroscopy. Chem Commun 46:6111–6113

    Article  CAS  Google Scholar 

  24. Burikov S et al (2010) Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems. Mol Phys 108:2427–2436

    Article  CAS  Google Scholar 

  25. Förster T (1965) Light and organic crystals: delocalized excitation and excitation transfer. Academic, New York

    Google Scholar 

  26. Botsoa J (2008) Synthèse de nanostructures de carbure de sillicium et étude de leurs propriétés optiques. PhD Dissertation, Institut National des Sciences Appliquées de Lyon

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Monnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, N., Monnier, V., Zakharko, Y. et al. Fluorescent (Au@SiO2)SiC Nanohybrids: Influence of Gold Nanoparticle Diameter and SiC Nanoparticle Surface Density. Plasmonics 8, 85–92 (2013). https://doi.org/10.1007/s11468-012-9425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9425-6

Keywords

Navigation