Skip to main content
Log in

Metal-Enhanced Fluorescence of Dye-Doped Silica Nano Particles

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Recent advancements in metal-enhanced fluorescence (MEF) suggest that it can be a promising tool for detecting molecules at very low concentrations when a fluorophore is fixed near the surface of metal nanoparticles. We report a simple method for aggregating multiple gold nanoparticles (GNPs) on Rhodamine B (RhB)-doped silica nanoparticles (SiNPs) utilizing dithiocarbamate (DTC) chemistry to produce MEF in solution. Dye was covalently incorporated into the growing silica framework via co-condensation of a 3-aminopropyltriethoxysilane (APTES) coupled RhB precursor using the Stöber method. Electron microscopy imaging revealed that these mainly non-spherical particles were relatively large (80 nm on average) and not well defined. Spherical core-shell particles were prepared by physisorbing a layer of RhB around a small spherical silica particle (13 nm) before condensing an outer layer of silica onto the surface. The core-shell method produced nanospheres (~30 nm) that were well defined and monodispersed. Both dye-doped SiNPs were functionalized with pendant amines that readily reacted with carbon disulfide (CS2) under basic conditions to produce DTC ligands that have exhibited a high affinity for gold surfaces. GNPs were produced via citrate reduction method and the resulting 13 nm gold nanospheres were then recoated with an ether-terminated alkanethiol to provide stability in ethanol. Fluorescent enhancement was observed when excess GNPs were added to DTC coated dye-doped SiNPs to form nanoparticle aggregates. Optimization of this system gave a fluorescence brightness enhancement of over 200 fold. Samples that gave fluorescence enhancement were characterized through Transmission Emission Micrograph (TEM) to reveal a pattern of multiple aggregation of GNPs on the dye-doped SiNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Drummen GPC (2012) Fluorescent probes and fluorescence (Microscopy) techniques — illuminating biological and biomedical research. Molecules 17(12):14067–14090

    Article  CAS  PubMed  Google Scholar 

  2. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1(1):5–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  PubMed  Google Scholar 

  4. Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 9(5):538–544

    Article  CAS  PubMed  Google Scholar 

  5. Lakowicz JR (1999) Principles of Fluorescent Spectroscopy, 2nd edn. Springer, New York, p 725

    Book  Google Scholar 

  6. Punj D, de Torres J, Rigneault H, Wenger J (2013) Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration. Opt Express 21(22):27338–27343

    Article  PubMed  Google Scholar 

  7. Kühn S, Håkanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97(1):017402

    Article  PubMed  Google Scholar 

  8. Butler SJ, Lamarque L, Pal R, Parker D (2014) Eurotracker dyes: highly emissive europium complexes as alternative organelle stains for live cell imaging. Chem Sci 5:1750–1756

    Article  CAS  Google Scholar 

  9. Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2003) Metal-enhanced fluorescence: potential applications in HTS. Comb Chem High Throughput Screen 6(2):109–117

    Article  CAS  PubMed  Google Scholar 

  10. Jain PK, Huang X, El-Sayed IE, El-Sayed MA (2008) Nobel metals on the nanoscale: optical and photothermal properties and same applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  PubMed  Google Scholar 

  11. Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308–1346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Lakowicz JR (2007) Metal-enhanced fluorescence of an organic fluorophore using gold particles. Opt Express 15(5):2598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–130

    Article  Google Scholar 

  15. Dragan AI, Bishop ES, Casas-Finet JR, Strouse RJ, McGivney J, Schenerman MA, Geddes CD (2012) Distance dependence of metal-enhanced fluorescence. Plasmonics 7:739–744

    Article  CAS  Google Scholar 

  16. Liu J, Li A, Tang J, Wang R, Kong N, Davis TP (2012) Thermoresponsive silver/polymer nanohybrids with switchable metal enhanced fluorescence. Chem Commun 48:4680–4682

    Article  CAS  Google Scholar 

  17. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7(2):496–501

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Dragan A, Geddes CD (2009) Wavelength dependence of metal-enhanced fluorescence. J Phys Chem C 113(28):12095–12100

    Article  CAS  Google Scholar 

  19. Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2008) Single-molecule studies on fluorescently labeled silver particles: effects of particle size. J Phys Chem C 112:18–26

    Article  CAS  Google Scholar 

  20. Kelly LE, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  21. Quinten M, Leitner A, Krenn J, Aussenegg F (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23(17):1331–1333

    Article  CAS  PubMed  Google Scholar 

  22. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357

    Article  CAS  PubMed  Google Scholar 

  23. Su KH, Wei QH, Zhang X, Mock J, Smith D, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3(8):1087–1090

    Article  CAS  Google Scholar 

  24. Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett 7(7):2101–2107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Acuna GP, Moller FM, Holzmeister P, Beater S, Lalkens B, Tinnefeld P (2012) Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338:506–510

    Article  CAS  PubMed  Google Scholar 

  26. Pan S, Wang Z, Rothberg LJ (2006) Enhancement of adsorbed dye monolayer fluorescence by a silver nanoparticle overlayer. J Phys Chem B 110:1783–17387

    Article  Google Scholar 

  27. Aslan K, Lakowicz JR, Szmacinski H, Geddes CD (2004) Metal-enhanced fluorescence solution-based sensing platform. J Fluoresc 14(6):677–679

    Article  CAS  Google Scholar 

  28. Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent core-shell Ag@ SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129(6):1524–1525

    Article  CAS  PubMed  Google Scholar 

  29. Furtaw MD, Lin D, Wu L, Anderson JP (2009) Near-infrared metal-enhanced fluorescence using a liquid–liquid droplet micromixer in a disposable poly (Methyl Methacrylate) microchip. Plasmonics 4(4):273–280

    Article  CAS  Google Scholar 

  30. Wang L, Tan W (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6(1):84–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ma D, Tan S, Jakubek ZJ, Simard B (2009) On the Structural Stability of Dye-Doped Silica Nanoparticles. IEEE Nano:651–655

  32. Hartlen K, Athanasopoulos A, Kitaev V (2008) Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 24:1714–1720

    Article  CAS  PubMed  Google Scholar 

  33. Frens G (1972) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci 241:20–22

    Article  Google Scholar 

  34. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thunemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301

    Article  CAS  PubMed  Google Scholar 

  35. Singh A (2012) Cucurbit[7]uril mediated viologen-fluorophore dyad for fluorescence off/on switch. Dissertation, University of Oklahoma

  36. Gunawardana KB (2012) Study of Metal Enhanced Fluorescence of Dye-Doped silica Nanopartilces. Dissertation, University of Oklahoma

  37. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58(1):3–7

    Article  CAS  PubMed  Google Scholar 

  38. Near RD, Hayden SC, Hunter RE, Thackston D, El-Sayed MA (2013) Rapid and efficient prediction of optical extinction coefficients for gold nanospheres and gold nanorods. J Phys Chem C 117:23950–23955

    Article  CAS  Google Scholar 

  39. Zhao Y, Pérez-Segarra W, Shi Q, Wei A., Dithiocarbamate assembly on gold. J. Am. Chem. Soc. 127 (20):7328

  40. Park MH, Ofir Y, Samanta B, Arumugam P, Miranda OR, Rotello VM (2008) Nanoparticle immobilization on surfaces via activatable heterobifunctional dithiocarbamate bond formation. Adv Mater 20:4185–4188

    CAS  Google Scholar 

  41. Gunawardana KB, Halterman RL (2011) Metal enhanced fluorescence of dye-doped silica nanoparticles. SWRM 898

  42. Green NS, Gunawardana KB, Costello, WN, Halterman RL (2012) Metal enhanced fluorescence of dye-doped silica nanoparticles. SWRM 423

  43. Vanderkooy A, Chen Y, Ferdinand G, Brook MA (2011) Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation. ACS Appl Mater Interfaces 3:3942–3947

    Article  CAS  PubMed  Google Scholar 

  44. Halterman RL, Moore JL, Yip WT (2011) Cucurbit[7]uril disrupts aggregate formation between rhodamine B dyes covalently attached to glass substrates. J Fluoresc 21:1467–1478

    Article  CAS  PubMed  Google Scholar 

  45. Lazarides AA, Schatz GC (2000) DNA-linked metal nanosphere materials: structural basis for the optical properties. J Phys Chem B 104(3):460–467

    Article  CAS  Google Scholar 

  46. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the NSF for funding this work (DMR – 0805233). We thank Anuradha Singh for providing S-10-[2-(2 methoxyethoxy)ethoxy]decyl ethanethioate (CH3O(CH2CH2O)C10H20SOCH3) for GNP surface functionalization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalani B. Gunawardana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunawardana, K.B., Green, N.S., Bumm, L.A. et al. Metal-Enhanced Fluorescence of Dye-Doped Silica Nano Particles. J Fluoresc 25, 311–317 (2015). https://doi.org/10.1007/s10895-015-1510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1510-8

Keywords

Navigation