Skip to main content
Log in

A Sub-wavelength Electro-optic Switch Based on Plasmonic T-Shaped Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide has been proposed and numerically investigated. The finite-difference time-domain simulation results reveal that the switch based on T-shaped waveguide with two U-shaped grooves can realize the function of switching single wavelength from one port to the other by an external voltage. The U-shaped structure is composed of two teeth filled with highly nonlinear organic EO material and one groove filled with 6H-SiC connecting the two teeth. The switch wavelength can be chosen by adjusting both lengths of the left and right teeth, and the switch voltage is 3.35 V for the wavelength of λ = 730 nm with the insertion loss around −2.6 dB and the extinction ratio around −20 dB at port 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(14):824–830

    Article  CAS  Google Scholar 

  2. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  Google Scholar 

  3. Leosson K, Nikolajsen T, Boltasseva A, Bozhevolnyi SI (2006) Long-range surface plasmon polariton nanowire waveguides for device applications. Opt Express 14(1):314–319

    Article  CAS  Google Scholar 

  4. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(23):508–511

    Article  CAS  Google Scholar 

  5. Veronis G, Fan S (2007) Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal–dielectric–metal plasmonic waveguides. Opt Express 15(3):1211–1221

    Article  Google Scholar 

  6. Wang B, Wang G (2004) Surface plasmon polariton propagation in nanoscale metal gap waveguides. Opt Lett 29(17):1992–1994

    Article  Google Scholar 

  7. Park J, Kim H, Lee B (2008) High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating. Opt Express 16(1):413–425

    Article  Google Scholar 

  8. Lin X-S, Huang X-G (2009) Numerical modeling of a teeth shaped nanoplasmonic waveguide filter. J Opt Soc Am B 26(7):1263–1268

    Article  CAS  Google Scholar 

  9. Lereu AL, Passian A, Goudonnet JP, Thundat T, Ferrell TL (2005) Optical modulation processes in thin films based on thermal effects of surface plasmons. Appl Phys Lett 86(15):154101–154103

    Article  Google Scholar 

  10. Dwivedi RP, Lee H-S, Song J-H, An S, Lee E-H (2011) Plasmonic modulator utilizing three parallel metal–dielectric–metal waveguide directional coupler and elasto-optic effects. Opt Commun 284(5):1418–1423

    Article  CAS  Google Scholar 

  11. Liu J, Beals M, Pomerene A, Bernardis S, Sun R, Cheng J, Kimerling L, Michel J (2008) Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat Photonics 2(7):433–437

    Article  CAS  Google Scholar 

  12. Geis W, Sinta R, Mowers W, Deneault SJ, Marchant MF, Krohn KE, Spector SJ, Calawa DR, Lyszczarz TM (2004) Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient. Appl Phys Lett 84(19):3729–3731

    Article  CAS  Google Scholar 

  13. Zhu J-H, Huang X-G, Tao J, Mei X, Jin X-P, Zhu Y-J (2010) A nanometeric plasmonic wavelength demultiplexer based on a T-shaped waveguide structure with double teeth-shaped waveguide at telecommunication wavelengths. J Mod Opt 57(21):2154–2158

    Article  Google Scholar 

  14. Zhong Z-J, Xu Y, Lan S, Dai Q-F, L-J Wu (2010) Sharp and asymmetric transmission response in metal–dielectric–metal plasmonic waveguides containing Kerr nonlinear media. Opt Express 18(1):79–86

    Article  CAS  Google Scholar 

  15. Tao J, Huang X-G, Lin X-S, Chen J-H, Zhang Q, Jin X-P (2010) Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. J Opt Soc Am B 27(2):323–327

    Article  CAS  Google Scholar 

  16. Bhatnagar M, Baliga B-J (1993) Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Trans Electr Devices 40(3):645–655

    Article  CAS  Google Scholar 

  17. Lee T-W, Gray S (2005) Subwavelength light bending by metal slit structures. Opt Express 13(24):9650–9659

    Google Scholar 

  18. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  19. Haus HA (1984) Waves and fields in optoelectronics. Prentice-Hall, NJ

Download references

Acknowledgment

The authors acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Grant No. 61077038) and the Natural Science Foundation of Guangdong Province, China (Grant No. 07117866).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Guang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, X., Huang, X.G. & Jin, T. A Sub-wavelength Electro-optic Switch Based on Plasmonic T-Shaped Waveguide. Plasmonics 6, 613–618 (2011). https://doi.org/10.1007/s11468-011-9242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9242-3

Keywords

Navigation